Skip to Content
MilliporeSigma
  • Dynamics of emerging organic contaminant removal in conventional and intensified subsurface flow treatment wetlands.

Dynamics of emerging organic contaminant removal in conventional and intensified subsurface flow treatment wetlands.

The Science of the total environment (2018-10-13)
Jaime Nivala, Stefanie Kahl, Johannes Boog, Manfred van Afferden, Thorsten Reemtsma, Roland A Müller
ABSTRACT

Six pilot-scale treatment wetlands treating municipal wastewater were monitored for classical wastewater parameters and selected Emerging Organic Compounds (EOCs): caffeine (CAF), ibuprofen (IBU), naproxen (NPX), benzotriazole (BTZ), diclofenac (DCL), acesulfame (ACE) and carbamazepine (CBZ) on a weekly basis over the course of one year. Treatment efficacy of the wetland systems was compared to that of a municipal wastewater treatment plant adjacent to the research site (activated sludge technology). The aerated wetlands VAp and HAp, and the two-stage vertical flow system VGp + VSp showed the highest treatment efficacy (>70% removal on a mass basis) and comparable treatment efficacy to the conventional WWTP for removal of CAF, IBU, NPX, BTZ, and DCL. Annual mass removal of ACE in the WWTP was 50% and varied in the wetlands (depending on system design) from zero to 62%. On a mean monthly basis, ACE removal in the treatment wetlands VGp + VSp, VAp, HAp, R was high (> 90%) for six months of the year. Monthly mean mass removal of CBZ was negligible for the WWTP and all treatment wetland systems except H50p, which showed up to 49% mass removal in June. Monthly mean mass removals of classical wastewater parameters and readily biodegradable EOCs (represented by CAF, IBU, NPX) were most stable in the intensified wetland designs VAp, HAp, and R. A statistical analysis confirms that system complexity, aerobic conditions, and temperature have the highest correlation to overall pollutant removal in the treatment wetland systems, including EOCs of high to moderate biodegradability. First-order removal rate coefficents and temperature correction factors for EOCs are reported for the first time in the treatment wetland literature. Limitations on the use of these values in engineering design are discussed.