• Home
  • Search Results
  • Three-Dimensional Quantification of Spheroid Degradation-Dependent Invasion and Invadopodia Formation.

Three-Dimensional Quantification of Spheroid Degradation-Dependent Invasion and Invadopodia Formation.

Biological procedures online (2018-10-26)
Cameron Goertzen, Denise Eymael, Marco Magalhaes
ABSTRACT

Invadopodia are actin-rich, proteolytic structures that enable cancer cell to invade into the surrounding tissues. Several in vitro invasion assays have been used in the literature ranging from directional quantitative assays to complex three-dimensional (3D) analyses. One of the main limitations of these assays is the lack of quantifiable degradation-dependent invasion in a three-dimensional (3D) environment that mimics the tumor microenvironment. In this article, we describe a new invasion and degradation assay based on the currently available tumor spheroid model that allows long-term high-resolution imaging of the tumor, precise quantification, and visualization of matrix degradation and multichannel immunocytochemistry. By incorporating a degradation marker (DQ-Green BSA) into a basement-membrane matrix, we demonstrate the ability to quantitate cancer cell-induced matrix degradation in 3D. Also, we describe a technique to generate histological sections of the tumor spheroid allowing the detection of invadopodia formation in the 3D tumor spheroid. This new technique provides a clear advantage for studying cancer in vitro and will help address critical questions regarding the dynamics of cancer cell invasion.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Dulbecco′s Phosphate Buffered Saline, Modified, without calcium chloride and magnesium chloride, liquid, sterile-filtered, suitable for cell culture