• Home
  • Search Results
  • Nitric oxide activation facilitated by cooperative multimetallic electron transfer within an iron-functionalized polyoxovanadate-alkoxide cluster.

Nitric oxide activation facilitated by cooperative multimetallic electron transfer within an iron-functionalized polyoxovanadate-alkoxide cluster.

Chemical science (2018-10-13)
F Li, R L Meyer, S H Carpenter, L E VanGelder, A W Nichols, C W Machan, M L Neidig, E M Matson
ABSTRACT

A series of NO-bound, iron-functionalized polyoxovanadate-alkoxide (FePOV-alkoxide) clusters have been synthesized, providing insight into the role of multimetallic constructs in the coordination and activation of a substrate. Upon exposure of the heterometallic cluster to NO, the vanadium-oxide metalloligand is oxidized by a single electron, shuttling the reducing equivalent to the {FeNO} subunit to form a {FeNO}7 species. Four NO-bound clusters with electronic distributions ranging from [VV3VIV2]{FeNO}7 to [VIV5]{FeNO}7 have been synthesized, and characterized via1H NMR, infrared, and electronic absorption spectroscopies. The ability of the FePOV-alkoxide cluster to store reducing equivalents in the metalloligand for substrate coordination and activation highlights the ultility of the metal-oxide scaffold as a redox reservoir.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Nitric oxide, 98.5%
Sigma-Aldrich
Bis(cyclopentadienyl)cobalt(II)