跳转至内容
Merck
  • Functional interplay between Parkin and Drp1 in mitochondrial fission and clearance.

Functional interplay between Parkin and Drp1 in mitochondrial fission and clearance.

Biochimica et biophysica acta (2014-06-01)
Lori Buhlman, Maria Damiano, Giulia Bertolin, Rosa Ferrando-Miguel, Anne Lombès, Alexis Brice, Olga Corti
摘要

Autosomal recessive early-onset Parkinson's disease is most often caused by mutations in the genes encoding the cytosolic E3 ubiquitin ligase Parkin and the mitochondrial serine/threonine kinase PINK1. Studies in Drosophila models and mammalian cells have demonstrated that these proteins regulate various aspects of mitochondrial physiology, including organelle transport, dynamics and turnover. How PINK1 and Parkin orchestrate these processes, and whether they always do so within a common pathway remain to be clarified. We have revisited the role of PINK1 and Parkin in mitochondrial dynamics, and explored its relation to the mitochondrial clearance program controlled by these proteins. We show that PINK1 and Parkin promote Drp1-dependent mitochondrial fission by mechanisms that are at least in part independent. Parkin-mediated mitochondrial fragmentation was abolished by treatments interfering with the calcium/calmodulin/calcineurin signaling pathway, suggesting that it requires dephosphorylation of serine 637 of Drp1. Parkinson's disease-causing mutations with differential impact on mitochondrial morphology and organelle degradation demonstrated that the pro-fission effect of Parkin is not required for efficient mitochondrial clearance. In contrast, the use of Förster energy transfer imaging microscopy revealed that Drp1 and Parkin are co-recruited to mitochondria in proximity of PINK1 following mitochondrial depolarization, indicating spatial coordination between these events in mitochondrial degradation. Our results also hint at a major role of the outer mitochondrial adaptor MiD51 in Drp1 recruitment and Parkin-dependent mitophagy. Altogether, our observations provide new insight into the mechanisms underlying the regulation of mitochondrial dynamics by Parkin and its relation to the mitochondrial clearance program mediated by the PINK1/Parkin pathway.

材料
货号
品牌
产品描述

Sigma-Aldrich
甲醛 溶液, for molecular biology, 36.5-38% in H2O
Sigma-Aldrich
L-谷氨酰胺, meets USP testing specifications, suitable for cell culture, 99.0-101.0%, from non-animal source
SAFC
甲醛 溶液, contains 10-15% methanol as stabilizer, 37 wt. % in H2O
Sigma-Aldrich
毛喉素, from Coleus forskohlii, ≥98% (HPLC), powder
Sigma-Aldrich
L-谷氨酰胺, ReagentPlus®, ≥99% (HPLC)
Sigma-Aldrich
乙二醇-双(2-氨基乙醚)-N,N,N′,N′-四乙酸, for molecular biology, ≥97.0%
Sigma-Aldrich
毛喉素, For use in molecular biology applications
Sigma-Aldrich
甲醛 溶液, for molecular biology, BioReagent, ≥36.0% in H2O (T)
Sigma-Aldrich
氰化羰基-3-氯苯腙, ≥97% (TLC), powder
SAFC
L-谷氨酰胺
Sigma-Aldrich
腺苷-3′,5′-环单磷酸, ≥98.5% (HPLC), powder
Supelco
甲醛 溶液, stabilized with methanol, ~37 wt. % in H2O, certified reference material
Sigma-Aldrich
L-谷氨酰胺, BioUltra, ≥99.5% (NT)
Sigma-Aldrich
甲醛 溶液, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
甲醛 溶液, meets analytical specification of USP, ≥34.5 wt. %
Sigma-Aldrich
L-谷氨酰胺
Sigma-Aldrich
L-谷氨酰胺, γ-irradiated, BioXtra, suitable for cell culture
Sigma-Aldrich
爱普杷嗪 盐酸盐, ≥98% (HPLC), powder
Sigma-Aldrich
乙二醇-双(2-氨基乙醚)-N,N,N′,N′-四乙酸, ≥97.0%
Sigma-Aldrich
甲醛 溶液, tested according to Ph. Eur.
Sigma-Aldrich
腺苷-3′,5′-环单磷酸 三羟甲基氨基甲烷盐, ≥97% (HPLC), powder
Sigma-Aldrich
甲醛-12C 溶液, 20% in H2O, 99.9 atom % 12C
Sigma-Aldrich
乙二醇-双(2-氨基乙醚)-N,N,N′,N′-四乙酸, BioUltra, for molecular biology, ≥99.0% (T)
Sigma-Aldrich
乙二醇-双(2-氨基乙醚)-N,N,N′,N′-四乙酸, BioXtra, ≥97 .0%
Supelco
毛喉素, analytical standard
Supelco
L-谷氨酰胺, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
L-谷氨酰胺, certified reference material, TraceCERT®, Manufactured by: Sigma-Aldrich Production GmbH, Switzerland
Sigma-Aldrich
L-谷氨酰胺, Vetec, reagent grade, ≥99%