Skip to Content
MilliporeSigma
  • Salusin-β induces foam cell formation and monocyte adhesion in human vascular smooth muscle cells via miR155/NOX2/NFκB pathway.

Salusin-β induces foam cell formation and monocyte adhesion in human vascular smooth muscle cells via miR155/NOX2/NFκB pathway.

Scientific reports (2016-03-24)
Hai-Jian Sun, Ming-Xia Zhao, Tong-Yan Liu, Xing-Sheng Ren, Qi Chen, Yue-Hua Li, Yu-Ming Kang, Guo-Qing Zhu
ABSTRACT

Vascular smooth muscle cells (VSMCs) are indispensible components in foam cell formation. Salusin-β is a stimulator in the progression of atherosclerosis. Here, we showed that salusin-β increased foam cell formation evidenced by accumulation of lipid droplets and intracellular cholesterol content, and promoted monocyte adhesion in human VSMCs. Salusin-β increased the expressions and activity of acyl coenzyme A:cholesterol acyltransferase-1 (ACAT-1) and vascular cell adhesion molecule-1 (VCAM-1) in VSMCs. Silencing of ACAT-1 abolished the salusin-β-induced lipid accumulation, and silencing of VCAM-1 prevented the salusin-β-induced monocyte adhesion in VSMCs. Salusin-β caused p65-NFκB nuclear translocation and increased p65 occupancy at the ACAT-1 and VCAM-1 promoter. Inhibition of NFκB with Bay 11-7082 prevented the salusin-β-induced ACAT-1 and VCAM-1 upregulation, foam cell formation and monocyte adhesion in VSMCs. Scavenging ROS, inhibiting NADPH oxidase or knockdown of NOX2 abolished the effects of salusin-β on ACAT-1 and VCAM-1 expressions, p65-NFκB nuclear translocation, lipid accumulation and monocyte adhesion in VSMCs. Salusin-β increased miR155 expression, and knockdown of miR155 prevented the effects of salusin-β on ACAT-1 and VCAM-1 expressions, p65-NFκB nuclear translocation, lipid accumulation, monocyte adhesion and ROS production in VSMCs. These results indicate that salusin-β induces foam formation and monocyte adhesion via miR155/NOX2/NFκB-mediated ACAT-1 and VCAM-1 expressions in VSMCs.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MISSION® esiRNA, targeting human VCAM1