Skip to Content
MilliporeSigma
  • 10-Ketomorphinan and 3-substituted-3-desoxymorphinan analogues as mixed kappa and micro opioid ligands: synthesis and biological evaluation of their binding affinity at opioid receptors.

10-Ketomorphinan and 3-substituted-3-desoxymorphinan analogues as mixed kappa and micro opioid ligands: synthesis and biological evaluation of their binding affinity at opioid receptors.

Journal of medicinal chemistry (2003-12-30)
Ao Zhang, Wennan Xiong, Jean M Bidlack, James E Hilbert, Brian I Knapp, Mark P Wentland, John L Neumeyer
ABSTRACT

A series of 10-ketomorphinan analogues were synthesized, and their binding affinity at all three opioid receptors was investigated. In most cases, high affinity at micro and kappa receptors, and lower affinity at delta receptor was observed, resulting in good selectivity for micro and kappa receptors. A wide range of substituents can be accommodated on the nitrogen position. The N-(S)-tetrahydrofurfuryl analogue 11 displayed the highest affinity at all three receptors. The N-cyclobutylmethyl analogue 13 gave both high affinity and selectivity at kappa receptor, and N-2-phenylethyl analogue 18 exhibited good affinity and selectivity at micro receptor. Further modifications of the 3-substituent indicated that one H-bond donor was an essential requirement for good affinity at micro and kappa receptors. Similar modifications were investigated at the 3-OH group of morphinans: levorphanol (2a), cyclorphan (2b), and MCL-101 (2c) lacking the 10-keto group. The 3-amino bioisosteric analogues (40 and 41) displayed reasonably good affinity at micro and kappa receptors. The 3-carboxamido replacement (compounds 46-48) in the morphinan subseries resulted in similar affinities comparable to their corresponding 3-OH congeners. The high affinity of these carboxamido analogues, along with their greater lipophilicity and metabolic stability, make them promising candidates for further pharmacological investigation.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
(Bromomethyl)cyclobutane, 97%