Skip to Content
MilliporeSigma
  • Changes in hypothalamic neurotransmitter and prostanoid levels in response to NMDA, CRF, and GLP-1 stimulation.

Changes in hypothalamic neurotransmitter and prostanoid levels in response to NMDA, CRF, and GLP-1 stimulation.

Analytical and bioanalytical chemistry (2015-01-31)
Fumio Kondo, Masahiko Tachi, Masahiko Gosho, Minoru Fukayama, Kazuhiro Yoshikawa, Shoshiro Okada
ABSTRACT

Determination of neuroactive substances, such as neurotransmitters and prostanoids, in the extracellular space of the living brain is a very important technique in neuroscience. The hypothalamic paraventricular nucleus (PVN) is one of the most important autonomic control centers in the brain. Recently, we demonstrated that thromboxane (Tx) A2 in the PVN may play an important role in adrenomedullary outflow evoked by N-methyl-D-aspartate (NMDA), corticotrophin-releasing factor (CRF), and glucagon-like peptide-1 (GLP-1) stimulation using microdialysis sampling and liquid chromatography-ion trap tandem mass spectrometry (LC-ITMS(n)). In the present study, we investigated whether centrally administered NMDA, CRF, and GLP-1 can release five neurotransmitters, acetylcholine (ACh), histamine, glutamate (Glu), γ-aminobutyric acid (GABA), and serotonin (5-HT), along with six prostanoids, TxB2, prostaglandin (PG) E2, PGD2, 15-deoxy-∆(12,14) (15d)-PGJ2, 6-keto-PGF1α, and PGF2α in rat PVN microdialysates after optimization of LC-ITMS(n) conditions . All stimulations increased the levels of 5-HT, TxB2, PGE2, and PGF2α (except for 5-HT stimulated with GLP-1). Only NMDA increased the levels of ACh, Glu, and GABA. Treatment with dizocilpine maleate (MK-801), a noncompetitive NMDA receptor antagonist, attenuated the NMDA-induced increase in the levels of neuroactive substances except for Glu. This is the first study to use LC-ITMS(n) to analyze neurotransmitters and prostanoids in the same microdialysates from rat PVN.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Methanol, SAJ first grade, ≥99.5%
Sigma-Aldrich
Methanol, SAJ special grade
Sigma-Aldrich
Methanol, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 10.0% acetone, 0.05% formic acid, 40.0% 2-propanol
Sigma-Aldrich
Methanol, JIS 300, ≥99.8%, for residue analysis
Sigma-Aldrich
Benzoyl chloride, SAJ first grade, ≥98.0%
Sigma-Aldrich
Methanol, JIS special grade, ≥99.8%
Sigma-Aldrich
Methanol, anhydrous, 99.8%
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (v/v) trifluoroacetic acid
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) trifluoroacetic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Acetonitrile solution, contains 0.05 % (w/v) ammonium formate, 5 % (v/v) water, 0.1 % (v/v) formic acid, suitable for HPLC
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, 99.93%
Sigma-Aldrich
Benzoyl chloride, 99%
Sigma-Aldrich
Benzoyl chloride, ReagentPlus®, ≥99%
Sigma-Aldrich
Benzoyl chloride-d5, 99 atom % D
Sigma-Aldrich
Methanol, NMR reference standard
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Acetonitrile, HPLC Plus, ≥99.9%, poly-coated bottles
Sigma-Aldrich
Formic acid, JIS special grade, ≥98.0%
Sigma-Aldrich
Ethyl acetate, JIS 300, ≥99.5%, for residue analysis
Sigma-Aldrich
Ethyl acetate, JIS special grade, ≥99.5%
Sigma-Aldrich
Acetonitrile, ≥99.8%, for residue analysis, JIS 300
Sigma-Aldrich
Ethyl acetate, SAJ first grade, ≥99.0%
Sigma-Aldrich
Acetonitrile, ≥99.8%, for residue analysis, JIS 1000
Sigma-Aldrich
Ethyl acetate, JIS 1000, ≥99.5%, for residue analysis
Sigma-Aldrich
Methanol solution, NMR reference standard, 4% in methanol-d4 (99.8 atom % D), NMR tube size 3 mm × 8 in.
Supelco
Methanol solution, contains 0.10 % (v/v) formic acid, UHPLC, suitable for mass spectrometry (MS), ≥99.5%
Sigma-Aldrich
Dimethyl sulfoxide, Vetec, reagent grade, 99%
Sigma-Aldrich
Ethyl acetate