Skip to Content
MilliporeSigma
  • In vitro bio-immunological and cytotoxicity studies of poly(2-oxazolines).

In vitro bio-immunological and cytotoxicity studies of poly(2-oxazolines).

Journal of materials science. Materials in medicine (2011-05-24)
Juraj Kronek, Zuzana Kroneková, Jozef Lustoň, Ema Paulovičová, Lucia Paulovičová, Barbara Mendrek
ABSTRACT

Poly(2-oxazolines) with varying alkyl chain lengths (e.g., methyl, ethyl, aryl) and molar masses have been tested for cell cytotoxicity in vitro. A standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used for the estimation of cell viability. Two monomers, 2-methyl-2-oxazoline and 2-ethyl-2-oxazoline, were found to provide polymers with non-cytotoxic properties. The dependence of cell viability on molar mass confirmed the expected trend; the viability increased with the higher molar mass of poly(2-ethyl-2-oxazoline) (PETOX), up to 15,000 g/mol. The results obtained for the polymers with aliphatic side chains were compared with the analogues that possessed an aromatic moiety. All results confirmed low cytotoxicity of the polymers prepared by cationic polymerization of 2-alkyl- and 2-aryl-2-oxazolines, which supports their utilization in biomedical applications. Fluorescence microscopy and steady-state fluorescence were used to observe pyrene-labeled polymer interactions with living cells. Polymer accumulated within the cells was found to be dependent on polymer concentration in media. The immunoefficiency of aromatic and aliphatic oxazoline polymers and copolymers was also studied. Phagocytic and metabolic activities of macrophages were used to assess the immunosuppressive effects of the selected copolymers for possible applications in drug delivery and immunobiology. Overall, the tested polymers demonstrated no significant influences on the cellular immunological parameters.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
1-(Bromoacetyl)pyrene, 97%