Skip to Content
MilliporeSigma
  • Ginsenoside Rf, a trace component of ginseng root, produces antinociception in mice.

Ginsenoside Rf, a trace component of ginseng root, produces antinociception in mice.

Brain research (1998-06-24)
J S Mogil, Y H Shin, E W McCleskey, S C Kim, S Y Nah
ABSTRACT

Ginseng root, a traditional oriental medicine, contains more than a dozen biologically active saponins called ginsenosides, including one present in only trace amounts called ginsenoside-Rf (Rf). Previously, we showed that Rf inhibits Ca2+ channels in mammalian sensory neurons through a mechanism requiring G-proteins, whereas a variety of other ginsenosides were relatively ineffective. Since inhibition of Ca2+ channels in sensory neurons contributes to antinociception by opioids, we tested for analgesic actions of Rf. We find dose-dependent antinociception by systemic administration of Rf in mice using two separate assays of tonic pain: in the acetic acid abdominal constriction test, the ED50 was 56+/-9 mg/kg, a concentration similar to those reported for aspirin and acetaminophen in the same assay; in the tonic phase of the biphasic formalin test, the ED50 was 129+/-32 mg/kg. Rf failed to affect nociception measured in three assays of acute pain: the acute phase of the formalin test, and the thermal (49 degrees C) tail-flick and increasing-temperature (3 degrees C/min) hot-plate tests. The simplest explanation is that Rf inhibits tonic pain without affecting acute pain, but other possibilities exist. Seeking a cellular explanation for the effect, we tested whether Rf suppresses Ca2+ channels on identified nociceptors. Inhibition was seen on large, but not small, nociceptors. This is inconsistent with a selective effect on tonic pain, so it seems unlikely that Ca2+ channel inhibition on primary sensory neurons can fully explain the behavioral antinociception we have demonstrated for Rf.

MATERIALS
Product Number
Brand
Product Description

Ginsenoside Rf, primary reference standard
Supelco
Ginsenoside Rf, analytical standard