Skip to Content
MilliporeSigma
  • Synthesis, quantitative structure-activity relationship and biological evaluation of 1,3,4-oxadiazole derivatives possessing diphenylamine moiety as potential anticancer agents.

Synthesis, quantitative structure-activity relationship and biological evaluation of 1,3,4-oxadiazole derivatives possessing diphenylamine moiety as potential anticancer agents.

Chemical & pharmaceutical bulletin (2013-02-02)
Doaa Ezzat Abdel Rahman
ABSTRACT

Synthesis of 2,5-disubstituted-1,3,4-oxadiazole (2a-c), 3-substituted aminomethyl-5-substituted-1,3,4-oxadiazole-2(3H)-thione (4a-m) and 2-substituted thio-5-substituted-1,3,4-oxadiazole (5a, b) had been described. All the synthesized derivatives were screened for anticancer activity against HT29 and MCF7 cancer cell lines using Sulfo-Rodamine B (SRB) standard method. Most of the tested compounds exploited potent antiproliferative activity against HT29 cancer cell line rather than MCF7 cancer cell line. Compounds 2a-c, 4f and 5a exhibited potent cytotoxicity (IC(50) 1.3-2.0 µM) and selectivity against HT29 cancer cell line. Quantitative structure-activity relationship (QSAR) study was applied to find a correlation between the experimental antiproliferative activities of the newly synthesized oxadiazole derivatives with their physicochemical parameter and topological index.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Diphenylamine, puriss. p.a., redox indicator, ACS reagent, reag. Ph. Eur., ≥98% (GC)
Supelco
Diphenylamine, PESTANAL®, analytical standard
Sigma-Aldrich
Diphenylamine, ACS reagent, ≥99%
Sigma-Aldrich
Diphenylamine, ReagentPlus®, 99%
Supelco
Diphenylamine solution, certified reference material, 5000 μg/mL in methanol