Skip to Content
MilliporeSigma
  • Enantiomeric separation of acidic compounds by nano-liquid chromatography with methylated-beta-cyclodextrin as a mobile phase additive.

Enantiomeric separation of acidic compounds by nano-liquid chromatography with methylated-beta-cyclodextrin as a mobile phase additive.

Journal of separation science (2009-04-17)
Anna Rocco, Salvatore Fanali
ABSTRACT

Some racemic nonsteroidal anti-inflammatory drugs, namely naproxen, indoprofen, ketoprofen, flurbiprofen, carprofen, cicloprofen, flunoxaprofen and suprofen were separated into their enantiomers by nano-LC. Chiral recognition was achieved adding to the mobile phase heptakis (2,3,6-tri-O-methyl)-beta-cyclodextrin (TM-beta-CD). Capillary columns of 100 microm id, packed with different RP particles were used for experiments. Effect of experimental parameters such as mobile phase composition, stationary phase type and length of packed capillary column on retention factor and chiral resolution of analytes were studied. The stationary phase type played a very important role in the enantiorecognition process. Best results in terms of highest enantioresolution factor and largest number of separated enantiomers were obtained reducing the particles size to 3 microm with RP(18) stationary phase. Most favourable mobile phase for enantiodiscrimination was obtained using relatively low concentrations of ACN (30%, v/v), 30 mM of TM-beta-CD and pH value of 3.0. The retention time of all studied enantiomers decreased by increasing the CD derivative concentration. The retention factors of selected studied compounds, specifically flurbiprofen, naproxen and suprofen, were measured employing TM-beta-CD concentrations in the range 0-40 mM. Assuming a 1:1 enantiomer/CD ratio, the apparent association constants of the studied enantiomers were calculated.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
Heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin, ≥98.0%
Sigma-Aldrich
Heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin, ≥90%
Supelco
Sodium formate solution, suitable for LC-MS, LiChropur