Skip to Content
MilliporeSigma
  • Valerenic acid potentiates and inhibits GABA(A) receptors: molecular mechanism and subunit specificity.

Valerenic acid potentiates and inhibits GABA(A) receptors: molecular mechanism and subunit specificity.

Neuropharmacology (2007-06-26)
S Khom, I Baburin, E Timin, A Hohaus, G Trauner, B Kopp, S Hering
ABSTRACT

Valerian is a commonly used herbal medicinal product for the treatment of anxiety and insomnia. Here we report the stimulation of chloride currents through GABA(A) receptors (I(GABA)) by valerenic acid (VA), a constituent of Valerian. To analyse the molecular basis of VA action, we expressed GABA(A) receptors with 13 different subunit compositions in Xenopus oocytes and measured I(GABA) using the two-microelectrode voltage-clamp technique. We report a subtype-dependent stimulation of I(GABA) by VA. Only channels incorporating beta(2) or beta(3) subunits were stimulated by VA. Replacing beta(2/3) by beta(1) drastically reduced the sensitivity of the resulting GABA(A) channels. The stimulatory effect of VA on alpha(1)beta(2) receptors was substantially reduced by the point mutation beta(2N265S) (known to inhibit loreclezole action). Mutating the corresponding residue of beta(1) (beta(1S290N)) induced VA sensitivity in alpha(1)beta(1S290N) comparable to alpha(1)beta(2) receptors. Modulation of I(GABA) was not significantly dependent on incorporation of alpha(1), alpha(2), alpha(3) or alpha(5) subunits. VA displayed a significantly lower efficiency on channels incorporating alpha(4) subunits. I(GABA) modulation by VA was not gamma subunit dependent and not inhibited by flumazenil (1 microM). VA shifted the GABA concentration-effect curve towards lower GABA concentrations and elicited substantial currents through GABA(A) channels at > or = 30 microM. At higher concentrations (> or = 100 microM), VA and acetoxy-VA inhibit I(GABA). A possible open channel block mechanism is discussed. In summary, VA was identified as a subunit specific allosteric modulator of GABA(A) receptors that is likely to interact with the loreclezole binding pocket.

MATERIALS
Product Number
Brand
Product Description

Supelco
Valerenic acid, analytical standard
Valerenic acid, primary reference standard