Skip to Content
MilliporeSigma
  • Inhibition of miR-21-5p suppresses high glucose-induced proliferation and angiogenesis of human retinal microvascular endothelial cells by the regulation of AKT and ERK pathways via maspin.

Inhibition of miR-21-5p suppresses high glucose-induced proliferation and angiogenesis of human retinal microvascular endothelial cells by the regulation of AKT and ERK pathways via maspin.

Bioscience, biotechnology, and biochemistry (2018-04-17)
Feng Qiu, Huijuan Tong, Yawen Wang, Jun Tao, Hailin Wang, Lei Chen
ABSTRACT

The aim of the present study is to investigate the role of miR-21-5p in angiogenesis of human retinal microvascular endothelial cells (HRMECs). HRMECs were incubated with 5 mM glucose, 30 mM glucose or 30 mM mannitol for 24 h, 48 h or 72 h. Then, HRMECs exposed to 30 mM glucose were transfected with miR-21-5p inhibitor. We found that high glucose increased the expression of miR-21-5p, VEGF, VEGFR2 and cell proliferation activity. Inhibition of miR-21-5p reduced high glucose-induced proliferation, migration, tube formation of HRMECs, and reversed the decreased expression of maspin as well as the abnormal activation of PI3K/AKT and ERK pathways. Down-regulation of maspin by siRNA significantly increased the activities of PI3K/AKT and ERK pathways. In conclusion, inhibition of miR-21-5p could suppress high glucose-induced proliferation and angiogenesis of HRMECs, and these effects may partly dependent on the regulation of PI3K/AKT and ERK pathways via its target protein maspin.