Skip to Content
MilliporeSigma
  • Emerin Deregulation Links Nuclear Shape Instability to Metastatic Potential.

Emerin Deregulation Links Nuclear Shape Instability to Metastatic Potential.

Cancer research (2018-08-30)
Mariana Reis-Sobreiro, Jie-Fu Chen, Tatiana Novitskaya, Sungyong You, Samantha Morley, Kenneth Steadman, Navjot Kaur Gill, Adel Eskaros, Mirja Rotinen, Chia-Yi Chu, Leland W K Chung, Hisashi Tanaka, Wei Yang, Beatrice S Knudsen, Hsian-Rong Tseng, Amy C Rowat, Edwin M Posadas, Andries Zijlstra, Dolores Di Vizio, Michael R Freeman
ABSTRACT

Abnormalities in nuclear shape are a well-known feature of cancer, but their contribution to malignant progression remains poorly understood. Here, we show that depletion of the cytoskeletal regulator, Diaphanous-related formin 3 (DIAPH3), or the nuclear membrane-associated proteins, lamin A/C, in prostate and breast cancer cells, induces nuclear shape instability, with a corresponding gain in malignant properties, including secretion of extracellular vesicles that contain genomic material. This transformation is characterized by a reduction and/or mislocalization of the inner nuclear membrane protein, emerin. Consistent with this, depletion of emerin evokes nuclear shape instability and promotes metastasis. By visualizing emerin localization, evidence for nuclear shape instability was observed in cultured tumor cells, in experimental models of prostate cancer, in human prostate cancer tissues, and in circulating tumor cells from patients with metastatic disease. Quantitation of emerin mislocalization discriminated cancer from benign tissue and correlated with disease progression in a prostate cancer cohort. Taken together, these results identify emerin as a mediator of nuclear shape stability in cancer and show that destabilization of emerin can promote metastasis.Significance: This study identifies a novel mechanism integrating the control of nuclear structure with the metastatic phenotype, and our inclusion of two types of human specimens (cancer tissues and circulating tumor cells) demonstrates direct relevance to human cancer.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/21/6086/F1.large.jpg Cancer Res; 78(21); 6086-97. ©2018 AACR.

MATERIALS
Product Number
Brand
Product Description

Sigma-Aldrich
MISSION® esiRNA, targeting human LMNA
Sigma-Aldrich
MISSION® esiRNA, targeting human EMD
Sigma-Aldrich
MISSION® esiRNA, targeting human DIAPH3