56796
Micro particles based on silicon dioxide
size: 0.5 μm
Synonym(s):
Beads based on silicon dioxide, microsize, Silicon dioxide beads
Sign Into View Organizational & Contract Pricing
All Photos(1)
About This Item
Recommended Products
grade
analytical standard
Quality Level
form
aqueous suspension
concentration
5% (solids)
particle size
0.5 μm
Mw/Mn
0.15
application(s)
glass & ceramic
industrial qc
pharmaceutical
format
neat
storage temp.
2-8°C
SMILES string
O=[Si]=O
InChI
1S/O2Si/c1-3-2
InChI key
VYPSYNLAJGMNEJ-UHFFFAOYSA-N
Looking for similar products? Visit Product Comparison Guide
General description
Silicon dioxide-based microbeads (size: 0.5 μm) are ideal for profiling particle size distribution (PSD) of a particle system.
Application
Silicon dioxide beads, 0.5 μm have a wide range of uses from use as a flow agent to electrical and medical applications.
Used to qualify, validate and monitor particle sizers and surface scanning equipment.
Also used to fabricate silicon-based nano-electro-mechanical systems (NEMS) for mass sensing application.
Also used to fabricate silicon-based nano-electro-mechanical systems (NEMS) for mass sensing application.
Features and Benefits
- suitable for routine instrument calibration checks, testing and corrections
- available in 5 and 10 mL pack sizes as neat samples
Storage Class
10 - Combustible liquids
wgk_germany
WGK 2
flash_point_f
Not applicable
flash_point_c
Not applicable
ppe
Eyeshields, Gloves
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Customers Also Viewed
Reaching silicon-based NEMS performances with 3D printed nanomechanical resonators
Nature Communications, 12(1), 1-9 (2021)
Analytical and bioanalytical chemistry, 398(6), 2373-2382 (2010-06-08)
Micron-sized particles have primarily been used in microfabricated flow cytometers for calibration purposes and proof-of-concept experiments. With increasing frequency, microparticles are serving as a platform for assays measured in these small analytical devices. Light scattering has been used to measure
Langmuir : the ACS journal of surfaces and colloids, 26(4), 2317-2324 (2010-02-10)
This paper explores the particle-level dynamics involved in the capture of gently flowing microparticles on adhesive planar surfaces, governed by electrostatic interactions. The work focuses on conditions which produce sustained microparticle rolling, useful for the development of microfluidic devices which
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service