All Photos(1)
About This Item
Empirical Formula (Hill Notation):
CuO
CAS Number:
Molecular Weight:
79.55
EC Number:
MDL number:
UNSPSC Code:
12352303
PubChem Substance ID:
Recommended Products
grade
CP
form
powder
reaction suitability
reagent type: catalyst
core: copper
availability
available only in Japan
SMILES string
[Cu]=O
InChI
1S/Cu.O
InChI key
QPLDLSVMHZLSFG-UHFFFAOYSA-N
Looking for similar products? Visit Product Comparison Guide
signalword
Warning
hcodes
pcodes
Hazard Classifications
Aquatic Acute 1 - Aquatic Chronic 1
Storage Class
13 - Non Combustible Solids
wgk_germany
WGK 3
flash_point_f
Not applicable
flash_point_c
Not applicable
ppe
dust mask type N95 (US), Eyeshields, Faceshields, Gloves
Choose from one of the most recent versions:
Already Own This Product?
Find documentation for the products that you have recently purchased in the Document Library.
Sumanta Kumar Meher et al.
Nanoscale, 5(5), 2089-2099 (2013-02-06)
In the quest to enhance the selectivity and sensitivity of novel structured metal oxides for electrochemical non-enzymatic sensing of glucose, we report here a green synthesis of unique sandwich-structured CuO on a large scale under microwave mediated homogeneous precipitation conditions.
Chengyi Hou et al.
Nanoscale, 5(3), 1227-1232 (2013-01-11)
We report a Cu(2)O nanocrystal-reduced graphene oxide hybrid that is dispersible in water and has anticancer activity under both visible and near-infrared light irradiation. In contrast to the highly efficient killing of both normal and cancer cells initiated by the
Pierre-Emmanuel Buffet et al.
Environmental science & technology, 47(3), 1620-1628 (2012-12-18)
The fate and effects of CuO nanoparticles (CuO NPs) were examined in endobenthic species (Scrobicularia plana , Hediste diversicolor), under environmentally realistic conditions in outdoor mesocosms (exposure to Cu at 10 μg L(-1) in particulate (CuO NPs) or soluble salt
Yunxin Liu et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 19(13), 4319-4326 (2013-03-01)
How to extend ultraviolet photocatalysts to the visible-light region is a key challenge for solar-driven photocatalysis. Herein, we show that ultraviolet ZnO photocatalysts can present high visible-light photocatalytic activity when combined with CuO quantum dots (QDs; <3 nm). Theoretical analysis demonstrates
Qiao bao Zhang et al.
Nanotechnology, 24(6), 065602-065602 (2013-01-24)
Reversible superhydrophobic and superhydrophilic surfaces based on porous substrates covered with CuO nanowires are developed in this study. A facile thermal oxidation method is used to synthesize non-flaking bicrystalline CuO nanowires on porous copper substrates in static air. The effects
Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.
Contact Technical Service