Skip to Content
MilliporeSigma
All Photos(2)

Key Documents

T11509

Sigma-Aldrich

Tetraethylenepentamine

technical grade

Synonym(s):

TEPA, Tetrene

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
(NH2CH2CH2NHCH2CH2)2NH
CAS Number:
Molecular Weight:
189.30
Beilstein/REAXYS Number:
506966
EC Number:
MDL number:
UNSPSC Code:
12352100
PubChem Substance ID:
NACRES:
NA.22

grade

technical grade

Quality Level

vapor density

6.53 (vs air)

vapor pressure

<0.01 mmHg ( 20 °C)

autoignition temp.

610 °F

refractive index

n20/D 1.505 (lit.)

bp

340 °C

mp

−40 °C (lit.)

density

0.998 g/mL at 25 °C (lit.)

SMILES string

NCCNCCNCCNCCN

InChI

1S/C8H23N5/c9-1-3-11-5-7-13-8-6-12-4-2-10/h11-13H,1-10H2

InChI key

FAGUFWYHJQFNRV-UHFFFAOYSA-N

Looking for similar products? Visit Product Comparison Guide

Related Categories

General description

Tetraethylenepentamine, also known as Tetrene, is a N5-structure polyamines ligand, often used as a nitrogen precursor to synthesize metal catalysts during oxygen reduction reaction (ORR).

Application

Tetraethylenepentamine (TEPA) can be used as a reagent:      
  • To functionalize magnesium 2,5-dihydroxyterephthalate (Mg-MOF-74) to enhance the CO2 adsorption performance of the material.
  • To modify magnetic chitosan resin to form amine-bearing chitosan for the efficient removal of uranium from an aqueous solution.
  • To synthesize poly(vinyl-chloride)/tetraethylenepentamine (PVC-TEPA) composite material, which is used as an efficient catalyst for the Knoevenagel condensation reaction.

signalword

Danger

Hazard Classifications

Acute Tox. 4 Dermal - Acute Tox. 4 Oral - Aquatic Chronic 2 - Eye Dam. 1 - Skin Corr. 1B - Skin Sens. 1

Storage Class

8A - Combustible corrosive hazardous materials

wgk_germany

WGK 2

flash_point_f

325.4 °F - closed cup

flash_point_c

163 °C - closed cup

ppe

Faceshields, Gloves, Goggles, type ABEK (EN14387) respirator filter


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Khalid Z Elwakeel et al.
Bioresource technology, 160, 107-114 (2014-02-08)
Chitosan was cross-linked using glutaraldehyde in the presence of magnetite. The resin was chemically modified through the reaction with tetraethylenepentamine (TEPA) to produce amine bearing chitosan. The resin showed a higher affinity towards the uptake of UO2(2+) ions from aqueous
Yamin Liu et al.
Environmental science & technology, 45(13), 5710-5716 (2011-06-16)
A novel solid amine sorbent was prepared using KIT-6-type mesoporous silica modified with tetraethylenepentamine (TEPA). Its adsorption behavior toward CO(2) from simulated flue gases is investigated using an adsorption column. The adsorption capacities at temperatures of 303, 313, 333, 343
Takuto Hasegawa et al.
Bioorganic & medicinal chemistry, 17(16), 6015-6019 (2009-07-21)
Two kinds of rhodamine modified beta-cyclodextrins (R-1 and R-2), which are coupled up ethylene diamine (EDA) and tetraethylene pentamine (TEPA) between Rh B and beta-cyclodextrin, respectively, have been synthesized. R-1 and 2 work as a new fluorogenic probe for monitoring
Xiao-Yi Huang et al.
Carbohydrate research, 346(10), 1232-1240 (2011-05-10)
To utilize the contribution of introduced amino groups to the adsorption of an anionic dye (eosin Y), a batch adsorption system was applied to study the adsorption of eosin Y from aqueous solution by tetraethylenepentamine (TEPA) modified chitosan (TEPA-CS). Experiments
Hua Wei et al.
Journal of the American Chemical Society, 134(40), 16554-16557 (2012-09-28)
Adaptation of in vitro optimized polymeric gene delivery systems for in vivo use remains a significant challenge. Most in vivo applications require particles that are sterically stabilized, which significantly compromises transfection efficiency of materials shown to be effective in vitro.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service