Skip to Content
MilliporeSigma
All Photos(1)

Key Documents

912204

Sigma-Aldrich

Hydroxyapatite granules

1.0-2.0 mm

Synonym(s):

Apatite hydroxide, Ca10(PO4)6(OH)2, Hydroxyapatite, Hydroxylapatite, Pentacalcium hydroxide triphosphate

Sign Into View Organizational & Contract Pricing


About This Item

Linear Formula:
Ca10(PO4)6(OH)2
UNSPSC Code:
12352305
NACRES:
NA.23

form

solid

Quality Level

particle size

1.0-2.0 mm

Looking for similar products? Visit Product Comparison Guide

Application

Hydroxyapatite and tricalcium phosphate are bioactive ceramic materials and they find applications as bone grafts, fillers and coating material for metal implants.

Storage Class

13 - Non Combustible Solids

wgk_germany

WGK 3

flash_point_f

Not applicable

flash_point_c

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Sorry, we don't have COAs for this product available online at this time.

If you need assistance, please contact Customer Support.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Lu Xie et al.
Materials science & engineering. C, Materials for biological applications, 59, 1007-1015 (2015-12-15)
The ideal bone tissue engineering scaffolds are long-cherished with the properties of interconnected macroporous structures, adjustable degradation and excellent biocompatibility. Here, a series of porous α/β-tricalcium phosphate (α/β-TCP) biphasic bioceramics with different phase ratios of α-TCP and β-TCP were successfully
Sahar Vahabzadeh et al.
Acta biomaterialia, 17, 47-55 (2015-02-02)
In this work we have investigated the effects of strontium (Sr) dopant on in vitro protein release kinetics and in vivo osteogenic properties of plasma sprayed hydroxyapatite (HA) coatings, along with their dissolution behavior. Plasma sprayed HA coatings are widely
Sophie C Cox et al.
Materials science & engineering. C, Materials for biological applications, 47, 237-247 (2014-12-11)
A systematic characterisation of bone tissue scaffolds fabricated via 3D printing from hydroxyapatite (HA) and poly(vinyl)alcohol (PVOH) composite powders is presented. Flowability of HA:PVOH precursor materials was observed to affect mechanical stability, microstructure and porosity of 3D printed scaffolds. Anisotropic

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service