Przejdź do zawartości
Merck

The O-glycosylated ectodomain of FXYD5 impairs adhesion by disrupting cell-cell trans-dimerization of Na,K-ATPase β1 subunits.

Journal of cell science (2016-05-05)
Elmira Tokhtaeva, Haying Sun, Nimrod Deiss-Yehiely, Yi Wen, Pritin N Soni, Nieves M Gabrielli, Elizabeth A Marcus, Karen M Ridge, George Sachs, Mónica Vazquez-Levin, Jacob I Sznajder, Olga Vagin, Laura A Dada
ABSTRAKT

FXYD5 (also known as dysadherin), a regulatory subunit of the Na,K-ATPase, impairs intercellular adhesion by a poorly understood mechanism. Here, we determined whether FXYD5 disrupts the trans-dimerization of Na,K-ATPase molecules located in neighboring cells. Mutagenesis of the Na,K-ATPase β1 subunit identified four conserved residues, including Y199, that are crucial for the intercellular Na,K-ATPase trans-dimerization and adhesion. Modulation of expression of FXYD5 or of the β1 subunit with intact or mutated β1-β1 binding sites demonstrated that the anti-adhesive effect of FXYD5 depends on the presence of Y199 in the β1 subunit. Immunodetection of the plasma membrane FXYD5 was prevented by the presence of O-glycans. Partial FXYD5 deglycosylation enabled antibody binding and showed that the protein level and the degree of O-glycosylation were greater in cancer than in normal cells. FXYD5-induced impairment of adhesion was abolished by both genetic and pharmacological inhibition of FXYD5 O-glycosylation. Therefore, the extracellular O-glycosylated domain of FXYD5 impairs adhesion by interfering with intercellular β1-β1 interactions, suggesting that the ratio between FXYD5 and α1-β1 heterodimer determines whether the Na,K-ATPase acts as a positive or negative regulator of intercellular adhesion.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
Anti-FXYD5 antibody produced in rabbit, Prestige Antibodies® Powered by Atlas Antibodies, affinity isolated antibody, buffered aqueous glycerol solution
Sigma-Aldrich
Anti-Na+/K+ ATPase α-1 Antibody, clone C464.6, clone C464.6, Upstate®, from mouse