Przejdź do zawartości
Merck

UHRF1 gene silencing inhibits cell proliferation and promotes cell apoptosis in human cervical squamous cell carcinoma CaSki cells.

Journal of ovarian research (2016-07-20)
Ting-Ting Ge, Meng Yang, Zhuo Chen, Ge Lou, Tao Gu
ABSTRAKT

Up-regulation of UHRF1 has been observed in a variety of cancers and appears to serve as an independent prognostic factor. To explore the effect of UHRF1 gene silencing on apoptosis and proliferation of cervical squamous cell carcinoma (CSCC) CaSki cells. This study consisted of 47 CSCC tissues and 40 normal cervical tissues. The CaSki cells were assigned into Blank group (CaSki cells not transfected), NC group (CaSki cells transfected with control siRNA), and UHRF1 Silence group (CaSki cells transfected with UHRF1 siRNA). qRT-PCR and Western blot were used for UHRF1 mRNA and protein expressions, CKK-8 assay for cell proliferation, flow cytometry for cell cycle and apoptosis, Western blot for expressions of apoptosis-related proteins. Nude mice tumor transplant experiment was performed. UHRF1 exhibited higher mRNA and protein expressions in the CSCC tissues than normal cervical tissues (both P < 0.05). The cell proliferation ability in the UHRF1 Silence group was reduced when compared with the Blank group and the NC group, the cells at S-G2M stage in the UHRF1 Silence group were dropped when compared with the Blank group and the NC group (P < 0.05), while the cells at G0/G1 stage were elevated (P < 0.05), and the proportion of Annexin V positive cells in the UHRF1 Silence group was increased in comparison with the Blank group and the NC group (P < 0.05). Nude mice tumor transplant experiment indicated that the growth rate and weight of tumor in the Blank group and NC group was higher and heavier than the UHRF1 Silence group (P < 0.05). UHRF1 showed a high expression in CSCC and UHRF1 silencing can reduce proliferation and enhance apoptosis of the CaSki cells.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
MISSION® esiRNA, targeting human UHRF1