Przejdź do zawartości
Merck

Distinct double flower varieties in Camellia japonica exhibit both expansion and contraction of C-class gene expression.

BMC plant biology (2014-10-26)
Yingkun Sun, Zhengqi Fan, Xinlei Li, Zhongchi Liu, Jiyuan Li, Hengfu Yin
ABSTRAKT

Double flower domestication is of great value in ornamental plants and presents an excellent system to study the mechanism of morphological alterations by human selection. The classic ABC model provides a genetic framework underlying the control of floral organ identity and organogenesis from which key regulators have been identified and evaluated in many plant species. Recent molecular studies have underscored the importance of C-class homeotic genes, whose functional attenuation contributed to the floral diversity in various species. Cultivated Camellia japonica L. possesses several types of double flowers, however the molecular mechanism underlying their floral morphological diversification remains unclear. In this study, we cloned the C-class orthologous gene CjAG in C. japonica. We analyzed the expression patterns of CjAG in wild C. japonica, and performed ectopic expression in Arabidopsis. These results revealed that CjAG shared conserved C-class function that controls stamen and carpel development. Further we analyzed the expression pattern of CjAG in two different C. japonica double-flower varieties, 'Shibaxueshi' and 'Jinpanlizhi', and showed that expression of CjAG was highly contracted in 'Shibaxueshi' but expanded in inner petals of 'Jinpanlizhi'. Moreover, detailed expression analyses of B- and C-class genes have uncovered differential patterns of B-class genes in the inner organs of 'Jinpanlizhi'. These results demonstrated that the contraction and expansion of CjAG expression were associated with the formation of different types of double flowers. Our studies have manifested two different trajectories of double flower domestication regarding the C-class gene expression in C. japonica.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Roche
DNA Molecular Weight Marker II, DIG-labeled, solution, pkg of 500 μL (10 μg/ml)