Przejdź do zawartości
Merck

Tumor-targeted delivery of paclitaxel using low density lipoprotein-mimetic solid lipid nanoparticles.

Molecular pharmaceutics (2015-02-17)
Jin-Ho Kim, Youngwook Kim, Ki Hyun Bae, Tae Gwan Park, Jung Hee Lee, Keunchil Park
ABSTRAKT

Water-insoluble anticancer drugs, including paclitaxel, present severe clinical side effects when administered to patients, primarily associated with the toxicity of reagents used to solubilize the drugs. In efforts to develop alternative formulations of water-insoluble anticancer drugs suitable for intravenous administration, we developed biocompatible anticancer therapeutic solid lipid nanoparticles (SLNs), mimicking the structure and composition of natural particles, low-density lipoproteins (LDLs), for tumor-targeted delivery of paclitaxel. These therapeutic nanoparticles contained water-insoluble paclitaxel in the core with tumor-targeting ligand covalently conjugated on the polyethylene glycol (PEG)-modified surface (targeted PtSLNs). In preclinical human cancer xenograft mouse model studies, the paclitaxel-containing tumor-targeting SLNs exhibited pronounced in vivo stability and enhanced biocompatibility. Furthermore, these SLNs had superior antitumor activity to in-class nanoparticular therapeutics in clinical use (Taxol and Genexol-PM) and yielded long-term complete responses. The in vivo targeted antitumor activities of the SLN formulations in a mouse tumor model suggest that LDL-mimetic SLN formulations can be utilized as a biocompatible, tumor-targeting platform for the delivery of various anticancer therapeutics.

MATERIAŁY
Numer produktu
Marka
Opis produktu

SAFC
HEPES
Triolein, European Pharmacopoeia (EP) Reference Standard
Supelco
HEPES, Pharmaceutical Secondary Standard; Certified Reference Material
Supelco
Cholesterol, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
HEPES, anhydrous, free-flowing, Redi-Dri, ≥99.5%
SAFC
Cholesterol, from sheep wool, Controlled origin, meets USP/NF testing specifications
Supelco
Glyceryl trioleate, analytical standard
Glycine, European Pharmacopoeia (EP) Reference Standard
SAFC
HEPES
Sigma-Aldrich
Hydrochloric acid solution, 32 wt. % in H2O, FCC
Sigma-Aldrich
Hydrochloric acid, meets analytical specification of Ph. Eur., BP, NF, fuming, 36.5-38%
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
Hydrogen chloride solution, 1.0 M in diethyl ether
Sigma-Aldrich
Hydrochloric acid, ACS reagent, 37%
Sigma-Aldrich
Hydrogen chloride solution, 1.0 M in acetic acid
Sigma-Aldrich
Hydrochloric acid, 37 wt. % in H2O, 99.999% trace metals basis
Sigma-Aldrich
Glyceryl trioleate, ≥97.0% (TLC)
Sigma-Aldrich
HEPES, ≥99.5% (titration)
Sigma-Aldrich
HEPES, BioXtra, suitable for mouse embryo cell culture, ≥99.5% (titration)
Sigma-Aldrich
Cholesterol, Sigma Grade, ≥99%
Sigma-Aldrich
Cholesterol, powder, BioReagent, suitable for cell culture, ≥99%
Sigma-Aldrich
Cholesterol, from sheep wool, ≥92.5% (GC), powder
Sigma-Aldrich
Glyceryl trioleate, ~65%
Sigma-Aldrich
Hydrochloric acid solution, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
Glyceryl trioleate, ≥99%
Supelco
Hydrochloric acid solution, volumetric, 0.1 M HCl (0.1N), endotoxin free
Sigma-Aldrich
Glycine, from non-animal source, meets EP, JP, USP testing specifications, suitable for cell culture, ≥98.5%
Sigma-Aldrich
Thiazolyl Blue Tetrazolium Bromide, 98%
Sigma-Aldrich
Glycine, suitable for electrophoresis, ≥99%
Sigma-Aldrich
HEPES, BioPerformance Certified, ≥99.5% (titration), suitable for cell culture