Przejdź do zawartości
Merck

Silica: a lung carcinogen.

CA: a cancer journal for clinicians (2013-12-12)
Kyle Steenland, Elizabeth Ward
ABSTRAKT

Silica has been known to cause silicosis for centuries, and evidence that silica causes lung cancer has accumulated over the last several decades. This article highlights 3 important developments in understanding the health effects of silica and preventing illness and death from silica exposure at work. First, recent epidemiologic studies have provided new information about silica and lung cancer. This includes detailed exposure-response data, thereby enabling the quantitative risk assessment needed for regulation. New studies have also shown that excess lung mortality occurs in silica-exposed workers who do not have silicosis and who do not smoke. Second, the US Occupational Safety and Health Administration has recently proposed a new rule lowering the permissible occupational limit for silica. There are approximately 2 million US workers currently exposed to silica. Risk assessments estimate that lowering occupational exposure limits from the current to the proposed standard will reduce silicosis and lung cancer mortality to approximately one-half of the rates predicted under the current standard. Third, low-dose computed tomography scanning has now been proven to be an effective screening method for lung cancer. For clinicians, asking about occupational history to determine if silica exposure has occurred is recommended. If such exposure has occurred, extra attention might be given to the early detection of silicosis and lung cancer, as well as extra emphasis on quitting smoking.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
LUDOX® TM-50 colloidal silica, 50 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® AS-30 colloidal silica, 30 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® TMA colloidal silica, 34 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® AS-40 colloidal silica, 40 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® CL-X colloidal silica, 45 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® HS-40 colloidal silica, 40 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® AM colloidal silica, 30 wt. % suspension in H2O
Sigma-Aldrich
Silica, mesostructured, MCM-41 type (hexagonal)
Sigma-Aldrich
Silicon dioxide, nanopowder (spherical, porous), 5-20 nm particle size (TEM), 99.5% trace metals basis
Sigma-Aldrich
Silicon dioxide, nanopowder, 10-20 nm particle size (BET), 99.5% trace metals basis
Sigma-Aldrich
Silica, nanoparticles, mesoporous, 200 nm particle size, pore size 4 nm
Sigma-Aldrich
Silica, nanopowder, 99.8% trace metals basis
Sigma-Aldrich
LUDOX® CL colloidal silica, 30 wt. % suspension in H2O
Sigma-Aldrich
Silica, mesostructured, MSU-F (cellular foam)
Sigma-Aldrich
LUDOX® HS-30 colloidal silica, 30 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® LS colloidal silica, 30 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® SM colloidal silica, 30 wt. % suspension in H2O
Sigma-Aldrich
LUDOX® TM-40 colloidal silica, 40 wt. % suspension in H2O
Sigma-Aldrich
Silicon dioxide, alumina doped, nanoparticles, dispersion, <50 nm particle size, 20 wt. % in H2O, ≥99.9% trace metals basis
Sigma-Aldrich
Silica