Przejdź do zawartości
Merck
  • Thiol-Branched Solid Polymer Electrolyte Featuring High Strength, Toughness, and Lithium Ionic Conductivity for Lithium-Metal Batteries.

Thiol-Branched Solid Polymer Electrolyte Featuring High Strength, Toughness, and Lithium Ionic Conductivity for Lithium-Metal Batteries.

Advanced materials (Deerfield Beach, Fla.) (2020-08-01)
Hangchao Wang, Qian Wang, Xin Cao, Yunyu He, Kai Wu, Jijin Yang, Henghui Zhou, Wen Liu, Xiaoming Sun
ABSTRAKT

Lithium-metal batteries (LMBs) with high energy densities are highly desirable for energy storage, but generally suffer from dendrite growth and side reactions in liquid electrolytes; thus the need for solid electrolytes with high mechanical strength, ionic conductivity, and compatible interface arises. Herein, a thiol-branched solid polymer electrolyte (SPE) is introduced featuring high Li+ conductivity (2.26 × 10-4 S cm-1 at room temperature) and good mechanical strength (9.4 MPa)/toughness (≈500%), thus unblocking the tradeoff between ionic conductivity and mechanical robustness in polymer electrolytes. The SPE (denoted as M-S-PEGDA) is fabricated by covalently cross-linking metal-organic frameworks (MOFs), tetrakis (3-mercaptopropionic acid) pentaerythritol (PETMP), and poly(ethylene glycol) diacrylate (PEGDA) via multiple CSC bonds. The SPE also exhibits a high electrochemical window (>5.4 V), low interfacial impedance (<550 Ω), and impressive Li+ transference number (tLi+ = 0.44). As a result, Li||Li symmetrical cells with the thiol-branched SPE displayed a high stability in a >1300 h cycling test. Moreover, a Li|M-S-PEGDA|LiFePO4 full cell demonstrates discharge capacity of 143.7 mAh g-1 and maintains 85.6% after 500 cycles at 0.5 C, displaying one of the most outstanding performances for SPEs to date.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
Bis(trifluoromethane)sulfonimide lithium salt, 99.95% trace metals basis