Przejdź do zawartości
Merck

Role of nucleoside transport inhibition and endogenous adenosine in prevention of catecholamine induced death in rabbits.

Cardiovascular research (1993-01-01)
H Van Belle, K Ver Donck, W Verheyen
ABSTRAKT

R 75,231, a potent and specific nucleoside transport inhibitor, largely prevents cardiac damage and death in catecholamine challenged rabbits. The major biochemical effect of nucleoside transport inhibition in ischaemic and reperfused myocardium is a prolonged accumulation of adenosine. The cardioprotection by R 75,231 may be explained if it can be shown that endogenous adenosine plays a role in catecholamine cardiotoxicity and if nucleoside transport inhibition is required for the cardioprotective effect of R 75,231. Several groups of rabbits were infused with catecholamines until death. Changes in survival with time of infusion by coinfusion of aminophylline and/or treatment with R 75,231 and its two stereoenantiomers were assessed. Treatment with R 75,231 postponed the time to reach 50% mortality threefold after challenge with adrenaline or noradrenaline. Draflazine, the (-)-enantiomer of R 75,231, was also effective, whereas the (+)-enantiomer, which is devoid of any effect on the transporter, was not cardioprotective. The cardioprotective effect of R 75,231 was dependent on the extent and duration of ex vivo inhibition of the transporter in blood. Co-infusion of aminophylline with adrenaline significantly accelerated the rate of mortality. Nucleoside transport inhibition is the major, if not the only, determinant for efficacy of R 75,231 and draflazine as cardioprotective agents. Taken together with the evidence for a role of endogenous adenosine, the benefit from nucleoside transport inhibition in this model may be the result of prolonged accumulation of endogenous adenosine.

MATERIAŁY
Numer produktu
Marka
Opis produktu

Sigma-Aldrich
Draflazine, ≥98% (HPLC)