콘텐츠로 건너뛰기
Merck
모든 사진(1)

Key Documents

922714

Sigma-Aldrich

Graphene nanoribbon

동의어(들):

GNRs, Graphene nanoribbon made by reductive splitting of CNT, Graphene nanoribbons by reductive splitting of CNT, H terminated graphene nanoribbons

로그인조직 및 계약 가격 보기


About This Item

Linear Formula:
C
CAS Number:
UNSPSC 코드:
12141908
NACRES:
NA.23

설명

Made by reductive splitting of CNT, edge terminated with H.

Quality Level

분석

≥90% carbon basis (EA)

너비

0.25-0.35 μm ± 0.05-0.1 μm

유사한 제품을 찾으십니까? 방문 제품 비교 안내

일반 설명

Graphene nanoribbons (GNR) are narrow strips of graphene with abundant edges and high aspect ratio. The edge functionalization can alter the chemical properties of the GNR to afford them good dispersibility and strong interfacial interactions with various materials. Such properties have made GNR suitable for producing a variety of composites, particularly as conductive fillers that provide percolation at a comparatively small mass loading due to the high aspect ratio and high conductivity. GNR have been used in sensors, energyconversion/storage devices, and electrochemical, photochemical and thermoelectrical systems. They have also been intensively studied for biochemical and biological applications such as bioimaging, biosensing, DNA sequencing, and neurophysiological recovery.

애플리케이션

Graphene nanoribbons (GNR) made by reductive splitting of carbon nanotubes possess highly reactive edge carbon atoms. The carbanions have been passivated by methanol to yield this H-terminated graphene nanoribbons product. This reductively splitted graphene nanoribbons preserve high electrical conductivity, and enable them good candidates for electrodes in neurophysiological recording, conductive filler in batteries, and heater in de-icing devices.

픽토그램

Exclamation mark

신호어

Warning

유해 및 위험 성명서

Hazard Classifications

Eye Irrit. 2 - STOT SE 3

표적 기관

Respiratory system

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point (°F)

Not applicable

Flash Point (°C)

Not applicable


가장 최신 버전 중 하나를 선택하세요:

시험 성적서(COA)

Lot/Batch Number

죄송합니다. 지금은 이 제품에 대한 COA이(가) 온라인에서 제공되지 않습니다.

도움이 필요하시면 연락하세요. 고객 지원 부서

이 제품을 이미 가지고 계십니까?

문서 라이브러리에서 최근에 구매한 제품에 대한 문서를 찾아보세요.

문서 라이브러리 방문

Kyle A Ritter et al.
Nature materials, 8(3), 235-242 (2009-02-17)
Graphene shows promise as a future material for nanoelectronics owing to its compatibility with industry-standard lithographic processing, electron mobilities up to 150 times greater than Si and a thermal conductivity twice that of diamond. The electronic structure of graphene nanoribbons
Melinda Y Han et al.
Physical review letters, 98(20), 206805-206805 (2007-08-07)
We investigate electronic transport in lithographically patterned graphene ribbon structures where the lateral confinement of charge carriers creates an energy gap near the charge neutrality point. Individual graphene layers are contacted with metal electrodes and patterned into ribbons of varying
Mohammad A Rafiee et al.
ACS nano, 4(12), 7415-7420 (2010-11-18)
It is well established that pristine multiwalled carbon nanotubes offer poor structural reinforcement in epoxy-based composites. There are several reasons for this which include reduced interfacial contact area since the outermost nanotube shields the internal tubes from the matrix, poor

자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..

고객지원팀으로 연락바랍니다.