콘텐츠로 건너뛰기
Merck
모든 사진(1)

Key Documents

233412

Sigma-Aldrich

Ethyl (hydroxyimino)cyanoacetate

97%, for peptide synthesis

동의어(들):

Ethyl cyano(hydroxyimino)acetate, Ethyl cyanoglyoxalate-2-oxime, Ethyl isonitrosocyanoacetate

로그인조직 및 계약 가격 보기


About This Item

Linear Formula:
NCC(=NOH)CO2C2H5
CAS Number:
Molecular Weight:
142.11
Beilstein:
774783
EC Number:
MDL number:
UNSPSC 코드:
12352100
PubChem Substance ID:
NACRES:
NA.22

product name

Ethyl (hydroxyimino)cyanoacetate, 97%

Quality Level

분석

97%

형태

solid

mp

130-132 °C (lit.)

응용 분야

peptide synthesis

작용기

amine
ester
nitrile
oxime

SMILES string

CCOC(=O)C(=N\O)\C#N

InChI

1S/C5H6N2O3/c1-2-10-5(8)4(3-6)7-9/h9H,2H2,1H3/b7-4+

InChI key

LCFXLZAXGXOXAP-QPJJXVBHSA-N

유사한 제품을 찾으십니까? 방문 제품 비교 안내

일반 설명

Ethyl (hydroxyimino)cyanoacetate is a potential replacement for zobenzotriazole and benzotriazole derivatives used in peptide synthesis.

Ethyl (hydroxyimino)cyanoacetate is also called as Oxyma. It is a highly efficient greener alternative for the amide and peptide synthesis.

애플리케이션

Ethyl (hydroxyimino)cyanoacetate has been used as an additive for the carbodiimide-mediated amide bond formation during established peptide synthesis method.For peptide synthesis grade material, please see product 851086.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point (°F)

Not applicable

Flash Point (°C)

Not applicable

개인 보호 장비

Eyeshields, Gloves, type N95 (US)


가장 최신 버전 중 하나를 선택하세요:

시험 성적서(COA)

Lot/Batch Number

적합한 버전을 찾을 수 없으신가요?

특정 버전이 필요한 경우 로트 번호나 배치 번호로 특정 인증서를 찾을 수 있습니다.

이 제품을 이미 가지고 계십니까?

문서 라이브러리에서 최근에 구매한 제품에 대한 문서를 찾아보세요.

문서 라이브러리 방문

Ranko Gacesa et al.
International journal of molecular sciences, 21(20) (2020-10-16)
Siderophores are iron-complexing compounds synthesized by bacteria and fungi. They are low molecular weight compounds (500-1500 Daltons) possessing high affinity for iron(III). Since 1970 a large number of siderophores have been characterized, the majority using hydroxamate or catecholate as functional
Hangyu Zhang et al.
Acta biomaterialia, 55, 183-193 (2017-04-04)
Self-assembling peptides programed by sequence design to form predefined nanostructures are useful for a variety of biomedical applications. However, assemblies of classic ionic self-complementary peptides are unstable in neutral pH, while charged peptide hydrogels have low mechanical strength. Here, we
Daniele Maiolo et al.
ChemistryOpen, 9(2), 253-260 (2020-02-29)
Here, we demonstrate that introduction of halogen atoms at the tyrosine 10 phenol ring of the DSGYEV sequence derived from the flexible amyloid-β N-terminus, promotes its self-assembly in the solid state. In particular, we report the crystal structures of two halogen-modified
Doaa M Anwar et al.
Bioconjugate chemistry, 29(9), 3026-3041 (2018-08-16)
In this study, promising approaches of dual-targeted micelles and drug-polymer conjugation were combined to enable injection of poorly soluble anticancer drugs together with site-specific drug release. Ursodeoxycholic acid (UDCA) as a hepatoprotective agent was grafted to maltodextrin (MD) via carbodiimide
Virginia Brancato et al.
Acta biomaterialia, 57, 47-58 (2017-05-10)
Therapeutic approaches based on nanomedicine have garnered great attention in cancer research. In vitro biological models that better mimic in vivo conditions are crucial tools to more accurately predict their therapeutic efficacy in vivo. In this work, a new 3D

문서

COMU is a non-explosive coupling agent suitable for solution phase & solid phase peptide synthesis. Its activity meets or exceeds that of HATU and its water-soluble by-product are easily removed.

자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..

고객지원팀으로 연락바랍니다.