콘텐츠로 건너뛰기
Merck
모든 사진(3)

Key Documents

206229

Sigma-Aldrich

Ruthenium(III) chloride hydrate

ReagentPlus®

동의어(들):

Ruthenium trichloride

로그인조직 및 계약 가격 보기


About This Item

Linear Formula:
RuCl3 · xH2O
CAS Number:
Molecular Weight:
207.43 (anhydrous basis)
EC Number:
MDL number:
UNSPSC 코드:
12352302
PubChem Substance ID:
NACRES:
NA.23

Quality Level

제품 라인

ReagentPlus®

형태

powder and chunks

구성

Degree of hydration, ≤1
Ruthenium content, 40.00-49.00%

반응 적합성

reagent type: catalyst
core: ruthenium

불순물

≤0.1% Insoluble matter (C=1%, 25% HCl)

SMILES string

O.Cl[Ru](Cl)Cl

InChI

1S/3ClH.H2O.Ru/h3*1H;1H2;/q;;;;+3/p-3

InChI key

BIXNGBXQRRXPLM-UHFFFAOYSA-K

유사한 제품을 찾으십니까? 방문 제품 비교 안내

일반 설명

Ruthenium(III) chloride hydrate ReagentPlus® is a versatile and valuable compound in various scientific and industrial applications, particularly due to its catalytic properties and role in material science. Its ability to participate in numerous chemical reactions and processes makes it an essential reagent in both research and practical applications. It comes with black or grey color with insoluble matter ≤ 0.1 %; and % Ruthenium after reduction with Magnesium is 40.00 - 49.00 %.

애플리케이션

Ruthenium(III) chloride hydrate (RuCl·xHO) is a versatile compound with several applications across different fields. It can be used as a catalyst hydrogeneation, oxidation reachtions. For example, one of the study has found it as an efficient catalyst for the selective oxidation of fatty alcohols to aldehydes. Due to its excellent conductivity and ability to withstand higher temperature, the product is used in electronics as a precursor for thin film deposition. Thin films of ruthenium and its derivatives are used in the fabrication of memory devices, microelectromechanical systems (MEMS) and integrated circuits. It can be used in the preparation of electrodes for electrochemical cells due to its good conductivity and stability. Ruthenium(III) chloride hydrate is used in the synthesis of ruthenium nanoparticles, which have applications in catalysis, electronics, and material science. Ruthenium compounds are being researched for their potential use as anticancer agents due to their ability to bind to DNA and inhibit cell proliferation. In addition, ruthenium(III) chloride hydrate is utilized in the field of solar energy. It is used as a sensitizer in dye-sensitized solar cells (DSSCs). DSSCs are an alternative to traditional silicon-based photovoltaic cells with low cost and easy fabrication process. Ruthenium-based dyes absorb light and transfer electrons, initiating the energy conversion process in DSSCs.

특징 및 장점

Ruthenium(III) Chloride hydrate ReagentPlus® has been designed and tested keeping the requirements of research applications with low insoluble matters, specifications ensuring the material is suitable for high-performance applications and provides consistency in experimental and industrial processes.

법적 정보

ReagentPlus is a registered trademark of Merck KGaA, Darmstadt, Germany

픽토그램

CorrosionExclamation markEnvironment

신호어

Danger

유해 및 위험 성명서

Hazard Classifications

Acute Tox. 4 Oral - Aquatic Chronic 2 - Eye Dam. 1 - Skin Corr. 1B

Storage Class Code

8A - Combustible corrosive hazardous materials

WGK

WGK 3

Flash Point (°F)

Not applicable

Flash Point (°C)

Not applicable

개인 보호 장비

Eyeshields, Faceshields, Gloves, type P3 (EN 143) respirator cartridges


가장 최신 버전 중 하나를 선택하세요:

시험 성적서(COA)

Lot/Batch Number

적합한 버전을 찾을 수 없으신가요?

특정 버전이 필요한 경우 로트 번호나 배치 번호로 특정 인증서를 찾을 수 있습니다.

이 제품을 이미 가지고 계십니까?

문서 라이브러리에서 최근에 구매한 제품에 대한 문서를 찾아보세요.

문서 라이브러리 방문

TiO 2 nanotube-supported ruthenium (III) hydrated oxide: A highly active catalyst for selective oxidation of alcohols by oxygen.
Bavykin DV, et al.
J. Catal., 235(1), 10-17 (2005)
Won-Hee Kim et al.
Organic letters, 8(12), 2543-2545 (2006-06-02)
An efficient oxidant-free oxidation for a wide range of alcohols was achieved by a recyclable ruthenium catalyst. The catalyst was prepared from readily available reagents by a one-pot synthesis through nanoparticle generation and gelation. [structure: see text]
Cho, C.S. et al.
Tetrahedron Letters, 40, 1499-1499 (1999)
Yao Zhang et al.
European journal of medicinal chemistry, 86, 449-455 (2014-09-10)
Ruthenium-based anticancer complexes have become increasingly popular for study over the last two decades. Although ruthenium complexes are currently being investigated in clinical trials, there are still some difficulties with their delivery and associated side effects. Human serum albumin (HSA)-based
Huaiyi Huang et al.
Dalton transactions (Cambridge, England : 2003), 44(35), 15602-15610 (2015-08-08)
Ruthenium complexes have been considered as promising substitutes for cisplatin in cancer chemotherapy. However, novel ruthenium-based therapies are faced with some limitations, such as unimpressive cytotoxicity toward solid tumors. Herein, we designed and synthesized phenyl-substituted terpyridyl ruthenium(ii) complexes ([Ru(tpy)(bpy)Cl](+) (Ru1)

문서

Hydrogen is one of the most important resources in providing food, fuel, and chemical products for our everyday life. Sustainable catalytic hydrogen production from bioethanol has gained significant attention in recent years due to globally diminishing fossil fuel supplies, which have necessitated the search for new chemical feedstocks.

The prevailing strategies for heat and electric-power production that rely on fossil and fission fuels are having a negative impact on the environment and on our living conditions.

자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..

고객지원팀으로 연락바랍니다.