추천 제품
반응 적합성
core: boron
reagent type: catalyst
Quality Level
mp
117-122 °C
SMILES string
[Li+].CCOCC.Fc1c(F)c(F)c(c(F)c1F)[B-](c2c(F)c(F)c(F)c(F)c2F)(c3c(F)c(F)c(F)c(F)c3F)c4c(F)c(F)c(F)c(F)c4F
InChI
1S/C24BF20.C4H10O.Li/c26-5-1(6(27)14(35)21(42)13(5)34)25(2-7(28)15(36)22(43)16(37)8(2)29,3-9(30)17(38)23(44)18(39)10(3)31)4-11(32)19(40)24(45)20(41)12(4)33;1-3-5-4-2;/h;3-4H2,1-2H3;/q-1;;+1
InChI key
KPLZKJQZPFREPG-UHFFFAOYSA-N
애플리케이션
Lithium tetrakis(pentafluorophenyl)borate ethyl etherate can be used as:
- A coordinating counter anion in electrochemical reactions along with transition metal catalysts to enhance their acidity or solubility.
- A catalyst in the Baeyer-Villiger oxidation of cycloalkanones to obtain lactones in the presence of aqueous hydrogen peroxide and oxalic acid.
- An activator in the synthesis of poly(norbornene ester)s.
포장
Bottomless glass bottle. Contents are inside inserted fused cone.
기타 정보
Salt for the generation of cationic transition metal complexes
신호어
Warning
유해 및 위험 성명서
Hazard Classifications
Eye Irrit. 2 - Skin Irrit. 2 - STOT SE 3
표적 기관
Respiratory system
Storage Class Code
11 - Combustible Solids
WGK
WGK 3
Flash Point (°F)
Not applicable
Flash Point (°C)
Not applicable
개인 보호 장비
dust mask type N95 (US), Eyeshields, Gloves
이미 열람한 고객
H. Shen, R.F. Jordan
Organometallics, 22, 1878-1878 (2003)
Kateryna Trofymchuk et al.
Nature photonics, 11(10), 657-663 (2017-10-07)
Here, we explore the enhancement of single molecule emission by polymeric nano-antenna that can harvest energy from thousands of donor dyes to a single acceptor. In this nano-antenna, the cationic dyes are brought together in very close proximity using bulky
High oxidation-state (formally d(0)) tungsten silylene complexes via double Si-H bond activation.
B V Mork et al.
Journal of the American Chemical Society, 123(39), 9702-9703 (2001-09-27)
Lucie Rivier et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 25(55), 12769-12779 (2019-07-10)
Detailed studies on hydrogen evolution by decamethylruthenocene ([Cp*2 RuII ]) highlighted that metallocenes are capable of photoreducing hydrogen without the need for an additional sensitizer. Electrochemical, gas chromatographic, and spectroscopic (UV/Vis, 1 H and 13 C NMR) measurements corroborated by DFT
Shu-Juan Liu et al.
Scientific reports, 7, 46669-46669 (2017-04-25)
Electrochemistry methods have been widely employed in the development of renewable energy, and involved in various processes, e.g. water splitting and oxygen reduction. Remarkable progress notwithstanding, there are still many challenges in further optimization of catalysts to achieve high performance.
자사의 과학자팀은 생명 과학, 재료 과학, 화학 합성, 크로마토그래피, 분석 및 기타 많은 영역을 포함한 모든 과학 분야에 경험이 있습니다..
고객지원팀으로 연락바랍니다.