コンテンツへスキップ
Merck

Heterogeneity in the inter-tumor transcriptome of high risk prostate cancer.

Genome biology (2014-08-27)
Alexander W Wyatt, Fan Mo, Kendric Wang, Brian McConeghy, Sonal Brahmbhatt, Lina Jong, Devon M Mitchell, Rebecca L Johnston, Anne Haegert, Estelle Li, Janet Liew, Jake Yeung, Raunak Shrestha, Anna V Lapuk, Andrew McPherson, Robert Shukin, Robert H Bell, Shawn Anderson, Jennifer Bishop, Antonio Hurtado-Coll, Hong Xiao, Arul M Chinnaiyan, Rohit Mehra, Dong Lin, Yuzhuo Wang, Ladan Fazli, Martin E Gleave, Stanislav V Volik, Colin C Collins
要旨

Genomic analyses of hundreds of prostate tumors have defined a diverse landscape of mutations and genome rearrangements, but the transcriptomic effect of this complexity is less well understood, particularly at the individual tumor level. We selected a cohort of 25 high-risk prostate tumors, representing the lethal phenotype, and applied deep RNA-sequencing and matched whole genome sequencing, followed by detailed molecular characterization. Ten tumors were exposed to neo-adjuvant hormone therapy and expressed marked evidence of therapy response in all except one extreme case, which demonstrated early resistance via apparent neuroendocrine transdifferentiation. We observe high inter-tumor heterogeneity, including unique sets of outlier transcripts in each tumor. Interestingly, outlier expression converged on druggable cellular pathways associated with cell cycle progression, translational control or immune regulation, suggesting distinct contemporary pathway affinity and a mechanism of tumor stratification. We characterize hundreds of novel fusion transcripts, including a high frequency of ETS fusions associated with complex genome rearrangements and the disruption of tumor suppressors. Remarkably, several tumors express unique but potentially-oncogenic non-ETS fusions, which may contribute to the phenotype of individual tumors, and have significance for disease progression. Finally, one ETS-negative tumor has a striking tandem duplication genotype which appears to be highly aggressive and present at low recurrence in ETS-negative prostate cancer, suggestive of a novel molecular subtype. The multitude of rare genomic and transcriptomic events detected in a high-risk tumor cohort offer novel opportunities for personalized oncology and their convergence on key pathways and functions has broad implications for precision medicine.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
塩化ナトリウム, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
塩化ナトリウム 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
塩化ナトリウム 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
塩化ナトリウム, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
塩化ナトリウム, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
塩化ナトリウム 溶液, BioUltra, for molecular biology, ~5 M in H2O
Sigma-Aldrich
塩化ナトリウム, 99.999% trace metals basis
Sigma-Aldrich
塩化ナトリウム, BioUltra, for molecular biology, ≥99.5% (AT)
Sigma-Aldrich
塩化ナトリウム, JIS special grade, ≥99.5%
Sigma-Aldrich
塩化ナトリウム 溶液, 5 M
Sigma-Aldrich
塩化ナトリウム, meets analytical specification of Ph. Eur., BP, USP, 99.0-100.5%
Supelco
塩化ナトリウム, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
塩化ナトリウム, SAJ first grade, ≥99.0%
Sigma-Aldrich
塩化ナトリウム, BioPerformance Certified, ≥99% (titration), suitable for insect cell culture, suitable for plant cell culture
Supelco
塩化ナトリウム, reference material for titrimetry, certified by BAM, >99.5%
Sigma-Aldrich
塩化ナトリウム 溶液, 0.85%
Sigma-Aldrich
塩化ナトリウム, AnhydroBeads, −10 mesh, 99.999% trace metals basis
Sigma-Aldrich
塩化ナトリウム, random crystals, optical grade, 99.9% trace metals basis
Sigma-Aldrich
塩化ナトリウム-35Cl, 99 atom % 35Cl
Sigma-Aldrich
塩化ナトリウム, tested according to Ph. Eur.
Sigma-Aldrich
Anti-Chromogranin A Antibody, clone LK2H10, clone LK2H10, Chemicon®, from mouse
Sigma-Aldrich
塩化ナトリウム 溶液, 1 M
Sigma-Aldrich
塩化ナトリウム, tablet
Sigma-Aldrich
塩化ナトリウム 溶液, 0.1 M