コンテンツへスキップ
Merck
  • The mitochondrial isoform of phosphoenolpyruvate carboxykinase (PEPCK-M) and glucose homeostasis: has it been overlooked?

The mitochondrial isoform of phosphoenolpyruvate carboxykinase (PEPCK-M) and glucose homeostasis: has it been overlooked?

Biochimica et biophysica acta (2013-11-02)
Romana Stark, Richard G Kibbey
要旨

Plasma glucose levels are tightly regulated within a narrow physiologic range. Insulin-mediated glucose uptake by tissues must be balanced by the appearance of glucose from nutritional sources, glycogen stores, or gluconeogenesis. In this regard, a common pathway regulating both glucose clearance and appearance has not been described. The metabolism of glucose to produce ATP is generally considered to be the primary stimulus for insulin release from beta-cells. Similarly, gluconeogenesis from phosphoenolpyruvate (PEP) is believed to be the primarily pathway via the cytosolic isoform of phosphoenolpyruvate carboxykinase (PEPCK-C). These models cannot adequately explain the regulation of insulin secretion or gluconeogenesis. A metabolic sensing pathway involving mitochondrial GTP (mtGTP) and PEP synthesis by the mitochondrial isoform of PEPCK (PEPCK-M) is associated with glucose-stimulated insulin secretion from pancreatic beta-cells. Here we examine whether there is evidence for a similar mtGTP-dependent pathway involved in gluconeogenesis. In both islets and the liver, mtGTP is produced at the substrate level by the enzyme succinyl CoA synthetase (SCS-GTP) with a rate proportional to the TCA cycle. In the beta-cell PEPCK-M then hydrolyzes mtGTP in the production of PEP that, unlike mtGTP, can escape the mitochondria to generate a signal for insulin release. Similarly, PEPCK-M and mtGTP might also provide a significant source of PEP in gluconeogenic tissues for the production of glucose. This review will focus on the possibility that PEPCK-M, as a sensor for TCA cycle flux, is a key mechanism to regulate both insulin secretion and gluconeogenesis suggesting conservation of this biochemical mechanism in regulating multiple aspects of glucose homeostasis. Moreover, we propose that this mechanism may be important for regulating insulin secretion and gluconeogenesis compared to canonical nutrient sensing pathways. PEPCK-M, initially believed to be absent in islets, carries a substantial metabolic flux in beta-cells. This flux is intimately involved with the coupling of glucose-stimulated insulin secretion. PEPCK-M activity may have been similarly underestimated in glucose producing tissues and could potentially be an unappreciated but important source of gluconeogenesis. The generation of PEP via PEPCK-M may occur via a metabolic sensing pathway important for regulating both insulin secretion and gluconeogenesis. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
D-(+)-グルコース, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-グルコース, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99.5%
Sigma-Aldrich
D-(+)-グルコース 溶液, 45% in H2O, sterile-filtered, BioXtra, suitable for cell culture
Sigma-Aldrich
D-(+)-グルコース 溶液, 100 g/L in H2O, sterile-filtered, BioXtra, suitable for cell culture
Sigma-Aldrich
デキストロース, 97.5-102.0% anhydrous basis, meets EP, BP, JP, USP testing specifications
Sigma-Aldrich
D-(+)-グルコース, ≥99.5% (GC), BioXtra
USP
デキストロース, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
D-(+)-グルコース, BioUltra, anhydrous, ≥99.5% (sum of enantiomers, HPLC)
Supelco
D-(+)-グルコース, analytical standard
Sigma-Aldrich
D-(+)-グルコース, suitable for mouse embryo cell culture, ≥99.5% (GC)
Sigma-Aldrich
D-(+)-グルコース, Hybri-Max, powder, BioReagent, suitable for hybridoma
Sigma-Aldrich
D-(+)-グルコース, ACS reagent
Supelco
デキストロース, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
D-(+)-グルコース, 99.9 atom % 16O, 99.9 atom % 12C
Sigma-Aldrich
グルコースストック溶液, 1000 mg/dL
Supelco
D-(+)-グルコース 溶液, 1 mg/mL in 0.1% benzoic acid, standard for enzymatic assay kits GAGO20, GAHK20, STA20, analytical standard
Sigma-Aldrich
D-(+)-グルコース, tested according to Ph. Eur.