コンテンツへスキップ
Merck
  • Suppression of 2,3-oxidosqualene cyclase by high fat diet contributes to liver X receptor-alpha-mediated improvement of hepatic lipid profile.

Suppression of 2,3-oxidosqualene cyclase by high fat diet contributes to liver X receptor-alpha-mediated improvement of hepatic lipid profile.

The Journal of biological chemistry (2009-01-03)
Huaixin Dang, Yan Liu, Wei Pang, Chenghong Li, Nanping Wang, John Y-J Shyy, Yi Zhu
要旨

The liver X receptors (LXRs) sense oxysterols and regulate genes involved in cholesterol metabolism. Synthetic agonists of LXRs are potent stimulators of fatty acid synthesis, which is mediated largely by sterol regulatory element-binding protein-1c (SREBP-1c). Paradoxically, an improved hepatic lipid profile by LXR was observed in mice fed a Western high fat (HF) diet. To explore the underlying mechanism, we administered mice normal chow or an HF diet and overexpressed LXRalpha in the liver. The HF diet with tail-vein injection of adenovirus of LXRalpha increased the expression of LXR-targeted genes involved in cholesterol reverse transport but not those involved in fatty acid synthesis. A similar effect was also observed with the use of 22R-hydroxycholesterol, an LXR ligand, in cultured hepatocytes. Consequently, SREBP-1c maturation was inhibited by the HF diet, which resulted from the induction of Insig-2a. Importantly, increased cholesterol level suppressed the expression of 2,3-oxidosqualene cyclase (OSC), which led to an increase in endogenous LXR ligand(s). Furthermore, siRNA-mediated knockdown of OSC expression enhanced LXR activity and selectively up-regulated LXR-targeted genes involved in cholesterol reverse transport. Thus, down-regulation of OSC may account for a novel mechanism underlying the LXR-mediated lipid metabolism in the liver of mice fed an HF diet.

材料
製品番号
ブランド
製品内容

Sigma-Aldrich
2,3-オキシドスクアレン, ≥92.0% (HPLC)