Passa al contenuto
Merck
Tutte le immagini(2)

Documenti fondamentali

SAB4501396

Sigma-Aldrich

Anti-ACC1 antibody produced in rabbit

affinity isolated antibody

Sinonimo/i:

ACAC, ACACA, ACC-α, ACCA, Acetyl-CoA carboxylase 1

Autenticatiper visualizzare i prezzi riservati alla tua organizzazione & contrattuali


About This Item

Codice UNSPSC:
12352203
NACRES:
NA.41

Origine biologica

rabbit

Livello qualitativo

Coniugato

unconjugated

Forma dell’anticorpo

affinity isolated antibody

Tipo di anticorpo

primary antibodies

Clone

polyclonal

Stato

buffered aqueous solution

PM

antigen 265 kDa

Reattività contro le specie

rat, human, mouse

Concentrazione

~1 mg/mL

tecniche

ELISA: 1:1000
immunohistochemistry: 1:50-1:100
western blot: 1:500-1:1000

N° accesso NCBI

N° accesso UniProt

Condizioni di spedizione

wet ice

Temperatura di conservazione

−20°C

modifica post-traduzionali bersaglio

unmodified

Informazioni sul gene

human ... ACACA(31)

Descrizione generale

Anti-ACC1 Antibody detects endogenous levels of total ACC1 protein.
Acetyl-CoA carboxylase 1 (ACC1) is expressed in adipose tissue, liver, and lactating mammary gland. It is a cytosolic enzyme. The ACC1 gene is mapped to human chromosome 17q12. It comprises biotin carboxylase (BC), carboxyl transferase (CT), and biotin carboxyl carrier protein (BCCP) domains. The BC and CT domains are bridged together through an interaction domain (BT) and a non-catalytic central domain region (CD). The ACC1 gene encompasses three distinct promoter (PI, PII, and PIII) regions.

Immunogeno

The antiserum was produced against synthesized peptide derived from human ACC1.

Immunogen Range: 46-95

Applicazioni

Anti-ACC1 antibody produced in rabbit has been used in immunoblotting at a dilution 1:500 and immunohistochemistry (1:50 dilution).

Azioni biochim/fisiol

Acetyl-CoA carboxylase 1 (ACC1) mediates the carboxylation of acetyl-CoA to form malonyl-CoA in an ATP-dependent manner. It plays a key role in lipogenesis, and its inhibition is regarded as one of the ways to target fatty acid synthesis, especially in metabolic disorders and metabolic syndromes. Haploinsufficiency of ACC1 gene impacts regular fatty acid metabolism. This, in turn, may lead to pathologies associated with infantile encephalitic illness and seizures.

Caratteristiche e vantaggi

Evaluate our antibodies with complete peace of mind. If the antibody does not perform in your application, we will issue a full credit or replacement antibody. Learn more.

Stato fisico

Rabbit IgG in phosphate buffered saline (without Mg2+ and Ca2+), pH 7.4, 150mM NaCl, 0.02% sodium azide and 50% glycerol.

Esclusione di responsabilità

Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.

Non trovi il prodotto giusto?  

Prova il nostro Motore di ricerca dei prodotti.

Codice della classe di stoccaggio

10 - Combustible liquids

Classe di pericolosità dell'acqua (WGK)

nwg

Punto d’infiammabilità (°F)

Not applicable

Punto d’infiammabilità (°C)

Not applicable


Scegli una delle versioni più recenti:

Certificati d'analisi (COA)

Lot/Batch Number

Non trovi la versione di tuo interesse?

Se hai bisogno di una versione specifica, puoi cercare il certificato tramite il numero di lotto.

Possiedi già questo prodotto?

I documenti relativi ai prodotti acquistati recentemente sono disponibili nell’Archivio dei documenti.

Visita l’Archivio dei documenti

Claudia Tonini et al.
Nutrients, 13(6) (2021-07-03)
Bisphenol A (BPA) is an organic chemical compound widely used for manufacturing plastics. BPA exposure originates principally from the diet, but it can also originate from dermal contact. In over 90% of individuals, including pregnant women, BPA is detectable in
Moritz Hunkeler et al.
Nature, 558(7710), 470-474 (2018-06-15)
Acetyl-CoA carboxylase catalyses the ATP-dependent carboxylation of acetyl-CoA, a rate-limiting step in fatty acid biosynthesis1,2. Eukaryotic acetyl-CoA carboxylases are large, homodimeric multienzymes. Human acetyl-CoA carboxylase occurs in two isoforms: the metabolic, cytosolic ACC1, and ACC2, which is anchored to the
Krishna B Singh et al.
Molecular cancer therapeutics, 18(10), 1800-1810 (2019-08-10)
Increased de novo synthesis of fatty acids is implicated in the pathogenesis of human prostate cancer, but a safe and effective clinical inhibitor of this metabolic pathway is still lacking. We have shown previously that leelamine (LLM) suppresses transcriptional activity
Krishna B Singh et al.
Carcinogenesis, 39(6), 826-837 (2018-04-19)
Increased de novo synthesis of fatty acids is a rather unique and targetable mechanism of human prostate cancer. We have shown previously that oral administration of sulforaphane (SFN) significantly inhibits the incidence and/or burden of prostatic intraepithelial neoplasia and well-differentiated
Claudia Tonini et al.
International journal of molecular sciences, 21(4) (2020-02-23)
The homeostatic control of lipid metabolism is essential for many fundamental physiological processes. A deep understanding of its regulatory mechanisms is pivotal to unravel prospective physiopathological factors and to identify novel molecular targets that could be employed to design promising

Articoli

Information on fatty acid synthesis and metabolism in cancer cells. Learn how proliferatively active cells require fatty acids for functions such as membrane generation, protein modification, and bioenergetic requirements. These fatty acids are derived either from dietary sources or are synthesized by the cell.

Il team dei nostri ricercatori vanta grande esperienza in tutte le aree della ricerca quali Life Science, scienza dei materiali, sintesi chimica, cromatografia, discipline analitiche, ecc..

Contatta l'Assistenza Tecnica.