跳转至内容
Merck
  • [Fe(CN)5(isoniazid)](3-): an iron isoniazid complex with redox behavior implicated in tuberculosis therapy.

[Fe(CN)5(isoniazid)](3-): an iron isoniazid complex with redox behavior implicated in tuberculosis therapy.

Journal of inorganic biochemistry (2014-09-06)
Eduardo Henrique Silva Sousa, Francisca Gilmara de Mesquita Vieira, Jennifer S Butler, Luiz Augusto Basso, Diógenes S Santiago, Izaura C N Diógenes, Luiz Gonzaga de França Lopes, Peter J Sadler
摘要

Tuberculosis has re-emerged as a worldwide threat, which has motivated the development of new drugs. The antituberculosis complex Na3[Fe(CN)5(isoniazid)] (IQG607) in particular is of interest on account of its ability to overcome resistance. IQG607 has the potential for redox-mediated-activation, in which an acylpyridine (isonicotinoyl) radical could be generated without assistance from the mycobacterial KatG enzyme. Here, we have investigated the reactivity of IQG607 toward hydrogen peroxide and superoxide, well-known intracellular oxidizing agents that could play a key role in the redox-mediated-activation of this compound. HPLC, NMR and electronic spectroscopy studies showed a very fast oxidation rate for bound isoniazid, over 460-fold faster than free isoniazid oxidation. A series of EPR spin traps were used for detection of isonicotinoyl and derived radicals bound to iron. This is the first report for an isonicotinoyl radical bound to a metal complex, supported by (14)N and (1)H hyperfine splittings for the POBN and PBN trapped radicals. POBN and PBN exhibited average hyperfine coupling constants of aN=15.6, aH=2.8 and aN=15.4, aH=4.7, respectively, which are in close agreement to the isonicotinoyl radical. Radical generation is thought to play a major role in the mechanism of action of isoniazid and this work provides strong evidence for its production within IQG607, which, along with biological and chemical oxidation data, support a redox-mediated activation mechanism. More generally the concept of redox activation of metallo prodrugs could be applied more widely for the design of therapeutic agents with novel mechanisms of action.

材料
货号
品牌
产品描述

Sigma-Aldrich
三氟乙酸, ReagentPlus®, 99%
Sigma-Aldrich
三氟乙酸, suitable for HPLC, ≥99.0%
Sigma-Aldrich
氢氧化钠, ACS reagent, ≥97.0%, pellets
Sigma-Aldrich
过氧化氢 溶液, contains inhibitor, 30 wt. % in H2O, ACS reagent
Sigma-Aldrich
过氧化氢 溶液, 30 % (w/w) in H2O, contains stabilizer
Sigma-Aldrich
氢氧化钠, reagent grade, ≥98%, pellets (anhydrous)
Sigma-Aldrich
氢氧化钠 溶液, 50% in H2O
Sigma-Aldrich
硫酸铵, ACS reagent, ≥99.0%
Sigma-Aldrich
硫酸铵, for molecular biology, ≥99.0%
Sigma-Aldrich
三氟乙酸, puriss. p.a., suitable for HPLC, ≥99.0% (GC)
Sigma-Aldrich
氢氧化钠 溶液, BioUltra, for molecular biology, 10 M in H2O
Sigma-Aldrich
过氧化氢 溶液, 50 wt. % in H2O, stabilized
Sigma-Aldrich
氢氧化钠 溶液, 1.0 N, BioReagent, suitable for cell culture
Sigma-Aldrich
L -抗坏血酸, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
L -抗坏血酸, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
氢氧化钠, BioXtra, ≥98% (acidimetric), pellets (anhydrous)
Sigma-Aldrich
氢氧化钠, puriss. p.a., ACS reagent, reag. Ph. Eur., K ≤0.02%, ≥98%, pellets