跳转至内容
Merck
  • Quantitative detection of human spermatogonia for optimization of spermatogonial stem cell culture.

Quantitative detection of human spermatogonia for optimization of spermatogonial stem cell culture.

Human reproduction (Oxford, England) (2014-10-01)
Y Zheng, A Thomas, C M Schmidt, C T Dann
摘要

Can human spermatogonia be detected in long-term primary testicular cell cultures using validated, germ cell-specific markers of spermatogonia? Germ cell-specific markers of spermatogonia/spermatogonial stem cells (SSCs) are detected in early (1-2 weeks) but not late (> 6 weeks) primary testicular cell cultures; somatic cell markers are detected in late primary testicular cell cultures. The development of conditions for human SSC culture is critically dependent on the ability to define cell types unequivocally and to quantify spermatogonia/SSCs. Growth by somatic cells presents a major challenge in the establishment of SSC cultures and therefore markers that define spermatogonia/SSCs, but are not also expressed by testicular somatic cells, are essential for accurate characterization of SSC cultures. Testicular tissue from eight organ donors with normal spermatogenesis was used for assay validation and establishing primary testicular cell cultures. Immunofluorescence analysis of normal human testicular tissue was used to validate antibodies (UTF1, SALL4, DAZL and VIM) and then the antibodies were used to demonstrate that primary testicular cells cultured in vitro for 1-2 weeks were composed of somatic cells and rare germ cells. Primary testicular cell cultures were further characterized by comparing to testicular somatic cell cultures using quantitative reverse transcriptase PCR (UTF1, FGFR3, ZBTB16, GPR125, DAZL, GATA4 and VIM) and flow cytometry (CD9 and SSEA4). UTF1, FGFR3, DAZL and ZBTB16 qRT-PCR and SSEA4 flow cytometry were validated for the sensitive, quantitative and specific detection of germ cells. In contrast, GPR125 mRNA and CD9 were found to be not specific to germ cells because they were also expressed in testicular somatic cell cultures. While the germ cell-specific markers were detected in early primary testicular cell cultures (1-2 weeks), their expression steadily declined over time in vitro. After 6 weeks in culture only somatic cells were detected. Different groups attempting SSC culture have utilized different sources of human testes and minor differences in the preparation and maintenance of the testicular cell cultures. Differences in outcome may be explained by genetic background of the source tissue or technical differences. The ability to propagate human SSCs in vitro is a prerequisite for proposed autologous transplantation therapy aimed at restoring fertility to men who have been treated for childhood cancer. By applying the assays validated here it will be possible to quantitatively compare human SSC culture conditions. The eventual development of conditions for long-term propagation of human SSCs in vitro will greatly facilitate learning about the basic biology of these cells and in turn the ability to use human SSCs in therapy. The experiments presented in this manuscript were funded by a Project Development Team within the ICTSI NIH/NCRR Grant Number TR000006. The authors declare no competing interests. Not applicable.

材料
货号
品牌
产品描述

Sigma-Aldrich
二甲基亚砜, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
二甲基亚砜, ACS reagent, ≥99.9%
Sigma-Aldrich
二甲基亚砜, for molecular biology
Sigma-Aldrich
二甲基亚砜, suitable for HPLC, ≥99.7%
Sigma-Aldrich
二甲基亚砜, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
二甲基亚砜, ReagentPlus®, ≥99.5%
Sigma-Aldrich
碳酸氢钠, ACS reagent, ≥99.7%
Sigma-Aldrich
碳酸氢钠, powder, BioReagent, for molecular biology, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
二甲基亚砜, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
2-巯基乙醇, for molecular biology, suitable for electrophoresis, suitable for cell culture, BioReagent, 99% (GC/titration)
Sigma-Aldrich
碳酸氢钠, ReagentPlus®, ≥99.5%, powder
Sigma-Aldrich
2-巯基乙醇, ≥99.0%
Sigma-Aldrich
甲醛 溶液, for molecular biology, 36.5-38% in H2O
Sigma-Aldrich
二甲基亚砜, puriss. p.a., ACS reagent, ≥99.9% (GC)
SAFC
甲醛 溶液, contains 10-15% methanol as stabilizer, 37 wt. % in H2O
Sigma-Aldrich
2-巯基乙醇, BioUltra, for molecular biology, ≥99.0% (GC)
Sigma-Aldrich
碳酸氢钠, anhydrous, free-flowing, Redi-Dri, ACS reagent, ≥99.7%
Sigma-Aldrich
二甲基亚砜, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
甲醛 溶液, for molecular biology, BioReagent, ≥36.0% in H2O (T)
Sigma-Aldrich
碳酸氢钠, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, E500, 99.0-100.5%, powder
Sigma-Aldrich
二甲基亚砜, anhydrous, ≥99.9%
Sigma-Aldrich
二甲基亚砜, PCR Reagent
Sigma-Aldrich
二甲基亚砜, puriss. p.a., dried, ≤0.02% water
Sigma-Aldrich
甲醛 溶液, ACS reagent, 37 wt. % in H2O, contains 10-15% Methanol as stabilizer (to prevent polymerization)
Sigma-Aldrich
L - (−) -葡萄糖, ≥99%
Supelco
甲醛 溶液, stabilized with methanol, ~37 wt. % in H2O, certified reference material
USP
碳酸氢钠, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
碳酸氢钠, anhydrous, free-flowing, Redi-Dri, ReagentPlus®, ≥99.5%
USP
二甲基亚砜, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
甲醛 溶液, meets analytical specification of USP, ≥34.5 wt. %