跳转至内容
Merck
所有图片(2)

主要文件

VIV402002

SynVivo SynBBB 3D blood brain barrier model chip starter kit, IMN2 radial configuration, includes pneumatic priming device

别名:

3D Blood Brain Barrier Model

登录查看公司和协议定价


About This Item

分類程式碼代碼:
60104506
NACRES:
NA.84

包裝

case of 1 ea

製造商/商標名

SynVivo 402002

儲存溫度

room temp

一般說明

10 - IMN2 SynBBB 3 μm slit barrier chips, 100 ft Tygon Tubing, 25 pack - Slide Clamps, 50 pack - 1 mL Syringe with Luer-Lok Tip, 50 pack - 24 Gauge Needle x 0.5 in long, SynVivo Pneumatic Primer, 2 - Five Stopcock Manifold 4-Way all FLL

SynVivo′s SynBBB 3D blood brain barrier model recreates the in vivo microenvironment by emulating a histological slice of brain tissue cells in communication with endothelial cells across the blood brain barrier (BBB). Shear-induced endothelial cell tight junctions, which cannot be achieved in the Transwell model, are easily achieved in the SynBBB model using physiological fluid flow. Formation of tight changes can be measured using biochemical or electrical analysis (assessing changes in electrical resistance) with the SynVivo Cell Impedance Analyzer. Interactions between brain tissue cells and endothelial cells are readily visualized in the SynBBB assay. Transwell models do not allow real-time visualization of these cellular interactions, which are critical for understanding of the BBB microenvironment.

SynBBB is the only in vitro BBB model that allows:
  • Accurate in vivo hemodynamic shear stress
  • Real-time visualization of cellular and barrier functionality
  • Significant reduction in cost and time
  • Robust and easy to use protocols

The SynBBB system is a highly versatile platform for investigation of:
  • Tight junction proteins: Determine the levels of tight junction proteins namely zonula occludens, claudins and occludins which regulate the BBB.
  • Transporter proteins: Analyze functionality of transporter proteins (e.g. Pgp) in normal and dysfunctional BBB.
  • Drug permeability: Evaluate real-time permeability of therapeutics and small molecules across the endothelium of the BBB.
  • Inflammation: Understand the underlying mechanisms of inflammatory responses on the regulation of the BBB.
  • Cell migration: Visualize and quantify in real-time migration of immune cells across the BBB.
  • Omic changes: Perform genomic, proteomic and metabolic analysis on normal and dysfunctional BBB.
  • Neurotoxicity: Analyze toxicity effects of chemical, biological and physical agents on the cells of the BBB.
Neuro-oncology: Investigate effects of the tumor cells on the BBB

聯結

LInk to Publications
application text

从最新的版本中选择一种:

分析证书(COA)

Lot/Batch Number

抱歉,我们目前尚未线上提供该产品的COA。

如需帮助,请联系 客户支持

已有该产品?

在文件库中查找您最近购买产品的文档。

访问文档库

Jez Huang et al.
Fluids and barriers of the CNS, 19(1), 38-38 (2022-06-02)
Human blood brain barrier (BBB) models derived from induced pluripotent stem cells (iPSCs) have become an important tool for the discovery and preclinical evaluation of central nervous system (CNS) targeting cell and gene-based therapies. Chimeric antigen receptor (CAR)-T cell therapy is

我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.

联系技术服务部门