推荐产品
生物源
mouse
品質等級
重組細胞
expressed in NSO cells
化驗
>90% (SDS-PAGE)
形狀
lyophilized powder
效力
0.04-2.5 ng/mL
分子量
monomer calculated mol wt 85.3 kDa
100-110 kDa by SDS-PAGE (reducing)
包裝
pkg of 200 μg
儲存條件
avoid repeated freeze/thaw cycles
技術
ligand binding assay: suitable
雜質
endotoxin, tested
UniProt登錄號
儲存溫度
−20°C
基因資訊
mouse ... Ephb2(13844)
一般說明
EphB2 (Epherin receptor B2) is a receptor tyrosine kinase (RTK), which belongs to a 13 member family of ephrin receptors. This family is divided into two classes A and B. EphB2 belongs to EphB group, which contains five members. The ligands to this group of receptors are named ephrin-B1-B3. It is a bidirectional functioning membrane protein.
應用
EphB2/Fc Chimera from mouse has been used for the investigation of the role of ephrinB-EphB signaling in the induction and maintenance of hyperalgesia, hyperexcitability of neurons of DRG (dorsal root ganglion) and hyperexcitability and elevated synaptic plasticity of neurons of DH (dorsal horn) regions of brain.
生化/生理作用
EphB2 (Epherin receptor B2) is involved in the development and plasticity of glutamatergic synapses, and their interaction with NMDA receptor. It can also regulate the processing of acute inflammatory pain, and mechanical allodynia as a result of nerve crush. Activation of this receptor results in recruitment and activation of Src-protein kinases. These, in turn, phosphorylate and activate NMDA receptor. It regulates the function of platelets and the development of thrombus. It is also responsible for the retraction of clots, and modulates independent platelet function in a contact-independent manner. EphB2 signaling is also involved in the modulation of axonal sprouting, which is induced by lesions.
Member of the Eph receptor tyrosine kinase family shown to bind ephrin-B1, ephrin-B2, and ephrin-B3; involved in pattern formation and morphogenesis, and in arterial/venous demarcation of the developing vasculature.
其他說明
Extracellular domain of mouse EphB2 (amino acids 1-548) fused to the C-terminal 6X histidine-tagged Fc region of human IgG1 via a polypeptide linker.
外觀
Lyophilized from a 0.2 μm filtered solution in 20 mM Tris, pH 8.0.
分析報告
The biological activity is measured by its ability to bind recombinant mouse ephrin-B2/Fc in an ELISA assay.
儲存類別代碼
11 - Combustible Solids
水污染物質分類(WGK)
WGK 3
閃點(°F)
Not applicable
閃點(°C)
Not applicable
個人防護裝備
Eyeshields, Gloves, type N95 (US)
Blood, 125(4), 720-730 (2014-11-06)
The Eph kinases, EphA4 and EphB1, and their ligand, ephrinB1, have been previously reported to be present in platelets where they contribute to thrombus stability. Although thrombus formation allows for Eph-ephrin engagement and bidirectional signaling, the importance specifically of Eph
Neural development, 8, 2-2 (2013-02-06)
Studies of developmental plasticity may provide insight into plasticity during adulthood, when neural circuitry is less responsive to losses or changes in input. In the mammalian auditory brainstem, globular bushy cell axons of the ventral cochlear nucleus (VCN) innervate the
FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 23(1), 90-98 (2008-09-06)
Cellular and molecular mechanisms underlying opioid tolerance and dependence remain elusive. We investigated roles of EphB receptor tyrosine kinases--which play important roles in synaptic connection and plasticity during development and in the matured nervous system--in development and maintenance of physical
Molecular pain, 4, 60-60 (2008-11-26)
EphB receptor tyrosine kinases, which play important roles in synaptic connection and plasticity during development and in matured nervous system, have recently been implicated in processing of pain after nerve injury and morphine dependence. Subtypes of the EphB receptors that
Pain, 139(1), 168-180 (2008-05-02)
Bidirectional signaling between ephrins and Eph receptor tyrosine kinases was first found to play important roles during development, but recently has been implicated in synaptic plasticity and pain processing in the matured nervous system. We show that ephrinB-EphB receptor signaling
我们的科学家团队拥有各种研究领域经验,包括生命科学、材料科学、化学合成、色谱、分析及许多其他领域.
联系技术服务部门