Accéder au contenu
Merck
  • Parallel dual secondary column-dual detection: a further way of enhancing the informative potential of two-dimensional comprehensive gas chromatography.

Parallel dual secondary column-dual detection: a further way of enhancing the informative potential of two-dimensional comprehensive gas chromatography.

Journal of chromatography. A (2014-08-19)
Luca Nicolotti, Chiara Cordero, Davide Bressanello, Cecilia Cagliero, Erica Liberto, Federico Magagna, Patrizia Rubiolo, Barbara Sgorbini, Carlo Bicchi
RÉSUMÉ

Comprehensive two-dimensional gas chromatography (GC×GC) coupled with Mass Spectrometry (MS) is one of today's most powerful analytical platforms for detailed analysis of medium-to-high complexity samples. The column set usually consists of a long, conventional-inner-diameter first dimension ((1)D) (typically 15-30m long, 0.32-0.25mm dc), and a short, narrow-bore second dimension ((2)D) column (typically 0.5-2m, 0.1mm dc) where separation is run in a few seconds. However, when thermal modulation is used, since the columns of a set are coupled in series, a flow mismatch occurs between the two dimensions, making it impossible to operate simultaneously at optimized flow conditions. Further, short narrow-bore capillaries can easily be overloaded, because of their lower loadability, limiting the effectiveness of (2)D separation. In this study, improved gas linear velocities in both chromatographic dimensions were achieved by coupling the (1)D column with two parallel (2)D columns, having identical inner diameter, stationary phase chemistry, and film thickness. In turn, these were connected to two detectors: a fast quadrupole Mass Spectrometer (MS) and a Flame Ionization Detector (FID). Different configurations were tested and performances compared to a conventional set-up; experimental results on two model mixtures (n-alkanes and fourteen medium-to-high polarity volatiles of interest in the flavor and fragrance field) and on the essential oil of Artemisia umbelliformis Lam., show the system provides consistent results, in terms of analyte identification (reliability of spectra and MS matching) and quantitation, also affording an internal cross-validation of quantitation accuracy.

MATÉRIAUX
Référence du produit
Marque
Description du produit

Sigma-Aldrich
Alcool benzylique, ReagentPlus®, ≥99%
Sigma-Aldrich
Alcool benzylique, ACS reagent, ≥99.0%
Sigma-Aldrich
Benzaldehyde, purified by redistillation, ≥99.5%
USP
Alcool benzylique, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Coumarin, ≥99% (HPLC)
Sigma-Aldrich
Camphor, 96%
Sigma-Aldrich
Alcool benzylique, puriss. p.a., ACS reagent, ≥99.0% (GC)
Sigma-Aldrich
Cinnamyl alcohol, 98%
Sigma-Aldrich
Benzaldehyde, ReagentPlus®, ≥99%
Sigma-Aldrich
Vanilline, ReagentPlus®, 99%
Sigma-Aldrich
Vanilline, ≥97%, FCC, FG
Sigma-Aldrich
Vanilline, natural, ≥97%, FCC, FG
USP
Vanilline, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Alcool benzylique, ≥99%, FCC, FG
Sigma-Aldrich
Benzaldehyde, ≥98%, FG, FCC
Sigma-Aldrich
Benzyl benzoate, ≥99%, FCC, FG
Supelco
Alcool benzylique, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Alcool benzylique, anhydrous, 99.8%
Sigma-Aldrich
Geranyl acetate, ≥97%
Supelco
Vanilline, Pharmaceutical Secondary Standard; Certified Reference Material
Sigma-Aldrich
Benzaldehyde, natural, FCC, FG
Sigma-Aldrich
Isoeugenol, 98%, mixture of cis and trans
Sigma-Aldrich
Alcool benzylique, natural, ≥98%, FG
Sigma-Aldrich
Benzyl benzoate, natural, ≥99%, FG
USP
Camphor, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
Benzyl benzoate, ReagentPlus®, ≥99.0%
Sigma-Aldrich
Sclareol, 98%
Sigma-Aldrich
(±)-Camphor, ≥95.5%
Sigma-Aldrich
Cinnamyl alcohol, ≥98%, FG
Sigma-Aldrich
Benzaldehyde, puriss. p.a., ≥99.0% (GC)