Skip to Content
Merck
All Photos(2)

Key Documents

906026

Sigma-Aldrich

Germanane

Synonym(s):

Germanium hydride, Germanium monohydride, Germylidyne

Sign Into View Organizational & Contract Pricing


About This Item

Empirical Formula (Hill Notation):
GeH
CAS Number:
Molecular Weight:
73.65
MDL number:
UNSPSC Code:
12352200

form

powder

SMILES string

[GeH4]

InChI

1S/GeH/h1H

InChI key

ROUHNNRKLNITEM-UHFFFAOYSA-N

General description

Germanane (GeH) is a 2D graphane analog with a direct band gap of 1.6 eV and electron mobility of 18000 cm2V-1s-1. It is a hydrogen terminated germanium (Ge) which can be synthesized by the topotactic deintercalation of CaGe2 crystals. Its crystal structure contains hexagonal Ge lattice with hydrogen atoms that are covalently attached to every Ge atom.

Application

GeH is a van der Waals material that can be used in a variety of applications such as electronic, optoelectronic, sensing and energy conversion.

Storage Class Code

11 - Combustible Solids

WGK

WGK 3

Flash Point(F)

Not applicable

Flash Point(C)

Not applicable


Certificates of Analysis (COA)

Search for Certificates of Analysis (COA) by entering the products Lot/Batch Number. Lot and Batch Numbers can be found on a product’s label following the words ‘Lot’ or ‘Batch’.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Improving the stability and optical properties of germanane via one-step covalent methyl-termination
Jiang S, et al.
Nature Communications, 5(2), 3389-3389 (2014)
The structure and amorphization of germanane
Jiang S, et al.
Journal of Material Chemistry C, 2(17), 3185-3188 (2014)
Large area epitaxial germanane for electronic devices
Amamou W, et al.
2d materials, 2(3), 035012-035012 (2015)
Electronic properties of germanane field-effect transistors
Madhushankar BN, et al.
2d materials, 4(2), 021009-021009 (2017)
Tuning electronic properties of germanane layers by external electric field and biaxial tensile strain: a computational study
Li Y and Chen Z
The Journal of Physical Chemistry C, 118(2), 1148-1154 (2014)

Articles

The properties of Germananes readily depend on the identity of the terminating ligands, allowing these materials to be readily tailored for a broad array of applications. Here we summarize the synthesis, properties, and potential uses of germanane materials.

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service