Saltar al contenido
Merck

Spatial control of cell gene expression by siRNA gradients in biodegradable hydrogels.

Advanced healthcare materials (2014-12-23)
Michael C Hill, Minh K Nguyen, Oju Jeon, Eben Alsberg
RESUMEN

The extracellular environment exposes cells to numerous biochemical and physical signals that regulate their behavior. Strategies for generating continuous gradients of signals in biomaterials may allow for spatial control and patterning of cell behavior, and ultimately aid in the engineering of complex tissues. Short interfering RNA (siRNA) can regulate gene expression by silencing specific mRNA molecules post-transcriptionally, which may be valuable when presented in a continuous gradient for regenerative or therapeutic applications. Here, a biodegradable hydrogel system containing a gradient of siRNA is presented, and its capacity to regulate protein expression of encapsulated cells in a spatially continuous manner is demonstrated. Photocross-linkable dextran hydrogels containing a gradient of siRNA have been successfully fabricated using a dual-programmable syringe pump system, and differential gene silencing in incorporated cells that is sustained over time has been shown using green fluorescent protein as a reporter. This platform technology may be applied in tissue engineering to spatially control biologically relevant cellular processes.

MATERIALES
Referencia del producto
Marca
Descripción del producto

Sigma-Aldrich
Dimetilsulfóxido, Hybri-Max, sterile-filtered, BioReagent, suitable for hybridoma, ≥99.7%
Sigma-Aldrich
Dimetilsulfóxido, ACS reagent, ≥99.9%
Sigma-Aldrich
Tetrahidrofuran, inhibitor-free, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Dimetilsulfóxido, for molecular biology
Sigma-Aldrich
Acetato de etilo, ACS reagent, ≥99.5%
Sigma-Aldrich
Dimetilsulfóxido, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Dimetilsulfóxido, sterile-filtered, BioPerformance Certified, meets EP, USP testing specifications, suitable for hybridoma
Sigma-Aldrich
Acetato de etilo, suitable for HPLC, ≥99.7%
Sigma-Aldrich
Tetrahidrofuran, contains 200-400 ppm BHT as inhibitor, ACS reagent, ≥99.0%
Sigma-Aldrich
Dimetilsulfóxido, ReagentPlus®, ≥99.5%
Sigma-Aldrich
Acetato de etilo, HPLC Plus, for HPLC, GC, and residue analysis, 99.9%
Sigma-Aldrich
Sacarosa, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Dimetilsulfóxido, ≥99.5% (GC), suitable for plant cell culture
Sigma-Aldrich
Sacarosa, ≥99.5% (GC)
Sigma-Aldrich
Sacarosa, ≥99.5% (GC), BioXtra
Sigma-Aldrich
4-(Dimethylamino)pyridine, ReagentPlus®, ≥99%
Sigma-Aldrich
Sacarosa, BioUltra, for molecular biology, ≥99.5% (HPLC)
Sigma-Aldrich
2-Hydroxyethyl methacrylate, contains ≤250 ppm monomethyl ether hydroquinone as inhibitor, 97%
USP
Sacarosa, United States Pharmacopeia (USP) Reference Standard
Sigma-Aldrich
4-Methoxyphenol, ReagentPlus®, 99%
Sigma-Aldrich
Acetato de etilo, suitable for HPLC, ≥99.8%
Sigma-Aldrich
2-Hydroxyethyl methacrylate, ≥99%, contains ≤50 ppm monomethyl ether hydroquinone as inhibitor
Sigma-Aldrich
Sacarosa, ≥99.5% (GC), BioReagent, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
Dimetilsulfóxido, BioUltra, for molecular biology, ≥99.5% (GC)
Sigma-Aldrich
Sacarosa, ≥99.5% (GC)
Sigma-Aldrich
Sacarosa, ≥99.5% (GC), Grade II, suitable for plant cell culture
Sigma-Aldrich
Dimetilsulfóxido, PCR Reagent
Sigma-Aldrich
Tetrahidrofuran, ACS reagent, ≥99.0%, contains 200-400 ppm BHT as inhibitor
Sigma-Aldrich
Sacarosa, Grade I, ≥99% (GC), suitable for plant cell culture
Sigma-Aldrich
Dimetilsulfóxido, anhydrous, ≥99.9%