Saltar al contenido
Merck

451622

Sigma-Aldrich

Lithium tetrafluoroborate

greener alternative

ultra dry, powder, 99.99% trace metals basis

Sinónimos:

Lithium borofluoride, Lithium fluoroborate

Iniciar sesiónpara Ver la Fijación de precios por contrato y de la organización


About This Item

Fórmula lineal:
LiBF4
Número de CAS:
Peso molecular:
93.75
Número CE:
Número MDL:
Código UNSPSC:
12352302
ID de la sustancia en PubChem:
NACRES:
NA.23

descripción

Grade: ultra dry

Análisis

99.99% trace metals basis

formulario

powder

características de los productos alternativos más sostenibles

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

impurezas

≤150.0 ppm Trace Metal Analysis

mp

293-300 °C (dec.) (lit.)

aplicaciones

battery manufacturing

categoría alternativa más sostenible

cadena SMILES

[Li+].F[B-](F)(F)F

InChI

1S/BF4.Li/c2-1(3,4)5;/q-1;+1

Clave InChI

UFXJWFBILHTTET-UHFFFAOYSA-N

¿Está buscando productos similares? Visita Guía de comparación de productos

Descripción general

Lithium tetrafluoroborate is a class of electrolytic materials that can be used in the fabrication of lithium-ion batteries. Lithium-ion batteries consist of anode, cathode, and electrolyte with a charge-discharge cycle. These materials enable the formation of greener and sustainable batteries for electrical energy storage.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Find details here.

Aplicación

LiBF4 is majorly used as an electrolyte with good ionic conductivity. It facilitates the formation of an electrolytic solution or a liquid electrolyte, which can be used in the fabrication of lithium-ion batteries and solid-state electrochemical displays.
Used recently in the development of a solid composite electrolyte for lithium batteries.

Palabra de señalización

Danger

Frases de peligro

Clasificaciones de peligro

Acute Tox. 4 Oral - Eye Dam. 1 - Muta. 2 - Skin Corr. 1B

Código de clase de almacenamiento

8B - Non-combustible corrosive hazardous materials

Clase de riesgo para el agua (WGK)

WGK 3

Punto de inflamabilidad (°F)

Not applicable

Punto de inflamabilidad (°C)

Not applicable

Equipo de protección personal

Eyeshields, Faceshields, Gloves, type P3 (EN 143) respirator cartridges


Elija entre una de las versiones más recientes:

Certificados de análisis (COA)

Lot/Batch Number

¿No ve la versión correcta?

Si necesita una versión concreta, puede buscar un certificado específico por el número de lote.

¿Ya tiene este producto?

Encuentre la documentación para los productos que ha comprado recientemente en la Biblioteca de documentos.

Visite la Librería de documentos

Application of di-ureasil ormolytes based on lithium tetrafluoroborate in solid-state electrochromic displays
Barbosa P, et al.
Journal of Materials Chemistry, 20(4), 723-730 (2010)
Zachary T Gossage et al.
The Analyst, 145(7), 2631-2638 (2020-02-27)
Interphases formed at battery electrodes are key to enabling energy dense charge storage by acting as protection layers and gatekeeping ion flux into and out of the electrodes. However, our current understanding of these structures and how to control their
A new lithium salt with dihydroxybenzene and lithium tetrafluoroborate for lithium battery electrolytes
Xue Z, et al.
Journal of Power Sources, 196(20), 8710-8713 (2011)
Proc. Power Sources Conf., 37th, 287-287 (1996)
Takahiro Ichikawa et al.
Journal of the American Chemical Society, 133(7), 2163-2169 (2011-01-29)
Thermotropic bicontinuous cubic (Cub(bi)) liquid-crystalline (LC) compounds based on a polymerizable ammonium moiety complexed with a lithium salt have been designed to obtain lithium ion-conductive all solid polymeric films having 3D interconnected ionic channels. The monomer shows a Cub(bi) phase

Artículos

Nanomaterials for Energy Storage in Lithium-ion Battery Applications

Increasing fuel costs and concerns about greenhouse gas emissions have spurred the growth in sales of hybrid electric vehicles (HEVs) that carry a battery pack to supplement the performance of the internal combustion engine (ICE).

Dr. Sun reviews the recent advances in solid-state rechargeable batteries and cover the fundamentals of solid electrolytes in solid-state batteries, the theory of ion conduction, and the structures and electrochemical processes of solid-state Li batteries.

Li-ion batteries are currently the focus of numerous research efforts with applications designed to reduce carbon-based emissions and improve energy storage capabilities.

Ver todo

Nuestro equipo de científicos tiene experiencia en todas las áreas de investigación: Ciencias de la vida, Ciencia de los materiales, Síntesis química, Cromatografía, Analítica y muchas otras.

Póngase en contacto con el Servicio técnico