In this work, dioctyl phthalate (Dop) was used as a highly plasticizing material to coat and link the surface of basic cellulose (Cel) with baker's yeast for the formation of a novel modified cellulose biosorbent (Cel-Dop-Yst). Characterization was accomplished by Fourier Transform Infrared Spectroscopy (FT-IR), Thermogravimetric analysis (TGA) and Scanning Electron Microscope (SEM) measurements. The feasibility of using Cel-Dop-Yst biosorbent as an efficient material for removal of Co(II), Cu(II), Cd(II), Hg(II) and Pb(II) ions was explored using the batch equilibrium technique along with various experimental controlling parameters. The optimum pH values for removal of these metal ions were characterized in the range of 5.0-7.0. Cel-Dop-Yst was identified as a highly selective biosorbent for removal of the selected divalent metal ions. The Cel-Dop-Yst biosorbent was successfully implemented in treatment and removal of these divalent metal ions from industrial wastewater, sea water and drinking water samples using a multistage microcolumn technique.