Passa al contenuto
Merck
  • Uridine Diphosphate-Glucuronosyltransferase (UGT) Xenobiotic Metabolizing Activity and Genetic Evolution in Pinniped Species.

Uridine Diphosphate-Glucuronosyltransferase (UGT) Xenobiotic Metabolizing Activity and Genetic Evolution in Pinniped Species.

Toxicological sciences : an official journal of the Society of Toxicology (2015-07-17)
Mayu Kakehi, Yoshinori Ikenaka, Shouta M M Nakayama, Yusuke K Kawai, Kensuke P Watanabe, Hazuki Mizukawa, Kei Nomiyama, Shinsuke Tanabe, Mayumi Ishizuka
ABSTRACT

There are various interspecies differences in xenobiotic-metabolizing enzymes. It is known that cats show slow glucuronidation of drugs such as acetaminophen and strong side effects due to the UGT1A6 pseudogene. Recently, the UGT1A6 pseudogene was found in the Northern elephant seal and Otariidae was suggested to be UGT1A6-deficient. From the results of measurements of uridine diphosphate-glucuronosyltransferase (UGT) activity using liver microsomes, the Steller sea lion, Northern fur seal, and Caspian seal showed UGT activity toward 1-hydroxypyrene and acetaminophen as low as in cats, which was significantly lower than in rat and dog. Furthermore, UGT1A6 pseudogenes were found in Steller sea lion and Northern fur seal, and all Otariidae species were suggested to have the UGT1A6 pseudogene. The UGT1 family genes appear to have undergone birth-and-death evolution based on a phylogenetic and synteny analysis of the UGT1 family in mammals including Carnivora. UGT1A2-1A5 and UGT1A7-1A10 are paralogous genes to UGT1A1 and UGTA6, respectively, and their numbers were lower in cat, ferret and Pacific walrus than in human, rat, and dog. Felidae and Pinnipedia, which are less exposed to natural xenobiotics such as plant-derived toxins due to their carnivorous diet, have experienced fewer gene duplications of xenobiotic-metabolizing UGT genes, and even possess UGT1A6 pseudogenes. Artificial environmental pollutants and drugs conjugated by UGT are increasing dramatically, and their elimination to the environment can be of great consequence to cat and Pinnipedia species, whose low xenobiotic glucuronidation capacity makes them highly sensitive to these compounds.

MATERIALI
N° Catalogo
Marchio
Descrizione del prodotto

Sigma-Aldrich
Acido acetico, glacial, ACS reagent, ≥99.7%
Sigma-Aldrich
Acido acetico, glacial, ReagentPlus®, ≥99%
Sigma-Aldrich
Acido formico, reagent grade, ≥95%
Sigma-Aldrich
Acido formico, ACS reagent, ≥96%
Sigma-Aldrich
Ammonio acetato, ACS reagent, ≥97%
Sigma-Aldrich
Acido formico, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Ammonio acetato, ≥99.99% trace metals basis
Sigma-Aldrich
Acido acetico, glacial, ≥99.99% trace metals basis
Sigma-Aldrich
Acido acetico, suitable for HPLC
Sigma-Aldrich
Acido acetico, glacial, puriss., meets analytical specification of Ph. Eur., BP, USP, FCC, 99.8-100.5%
Sigma-Aldrich
Acido acetico, glacial, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8%
Sigma-Aldrich
Acido formico, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
Sodium phosphate, 96%
Sigma-Aldrich
Acido formico, ACS reagent, ≥88%
Sigma-Aldrich
Ammonio acetato, for molecular biology, ≥98%
Sigma-Aldrich
Colato di Sodio, from bovine and/or ovine bile, ≥99%
Sigma-Aldrich
Ammonium acetate solution, for molecular biology, 7.5 M
Sigma-Aldrich
Pyrene, 98%
Sigma-Aldrich
Acido acetico, for luminescence, BioUltra, ≥99.5% (GC)
Sigma-Aldrich
Ammonio acetato, 99.999% trace metals basis
Sigma-Aldrich
Acido acetico, ≥99.5%, FCC, FG
Sigma-Aldrich
Acido acetico, natural, ≥99.5%, FG
Sigma-Aldrich
Colato di Sodio, BioXtra, ≥99%
Sigma-Aldrich
Uridine 5′-diphosphoglucuronic acid ammonium salt, 98-100%
Sigma-Aldrich
Acido formico, ≥95%, FCC, FG
Sigma-Aldrich
Acido acetico, glacial, puriss., 99-100%
Sigma-Aldrich
Pyrene, puriss. p.a., for fluorescence, ≥99.0% (GC)
Sigma-Aldrich
Colato di Sodio, ≥97.0% (dried material, NT)
Sigma-Aldrich
1-Hydroxypyrene, 98%
Sigma-Aldrich
Colato di Sodio, suitable for cell culture, BioReagent