Passa al contenuto
Merck
Tutte le immagini(1)

Key Documents

719927

Sigma-Aldrich

Resomer® RG 756 S, Poly(D,L-lactide-co-glycolide)

ester terminated, lactide:glycolide 75:25, Mw 76,000-115,000

Sinonimo/i:

PLGA

Autenticatiper visualizzare i prezzi riservati alla tua organizzazione & contrattuali


About This Item

Formula condensata:
[C3H4O2]x[C2H2O2]y
Numero CAS:
Codice UNSPSC:
12162002
NACRES:
NA.23

Livello qualitativo

Forma fisica

amorphous

Rapporto d’alimentazione

lactide:glycolide 75:25

PM

Mw 76,000-115,000

Tempo di degradazione

<6 months

Viscosità

0.71-1.0 dL/g, 0.1 % (w/v) in chloroform(25 °C, Ubbelohde) (size 0c glass capillary viscometer)

Temp. transizione

Tg 49-55 °C

Temperatura di conservazione

2-8°C

InChI

1S/C6H8O4.C4H4O4/c1-3-5(7)10-4(2)6(8)9-3;5-3-1-7-4(6)2-8-3/h3-4H,1-2H3;1-2H2
LCSKNASZPVZHEG-UHFFFAOYSA-N

Applicazioni

Controlled release
Poly (lactic-co-glycolic acid) 75:25 copolymer may be used to design a controlled drug delivery implant.

Note legali

Product of Evonik
RESOMER is a registered trademark of Evonik Rohm GmbH

Codice della classe di stoccaggio

11 - Combustible Solids

Classe di pericolosità dell'acqua (WGK)

WGK 3

Punto d’infiammabilità (°F)

Not applicable

Punto d’infiammabilità (°C)

Not applicable


Scegli una delle versioni più recenti:

Certificati d'analisi (COA)

Lot/Batch Number

Non trovi la versione di tuo interesse?

Se hai bisogno di una versione specifica, puoi cercare il certificato tramite il numero di lotto.

Possiedi già questo prodotto?

I documenti relativi ai prodotti acquistati recentemente sono disponibili nell’Archivio dei documenti.

Visita l’Archivio dei documenti

An in-situ forming implant formulation of naltrexone with minimum initial burst release using mixture of PLGA copolymers and ethyl heptanoate as an additive: In-vitro, ex-vivo, and in-vivo release evaluation.
Kamali H, et al.
Journal of drug delivery science and technology, 47, 95-105 (2018)
Rongcai Liang et al.
International journal of pharmaceutics, 454(1), 344-353 (2013-07-23)
Peptide or protein degradation often occurs when water flows into the dosage form. The aim of this study was to investigate the effect of water on exenatide acylation in poly(lactide-co-glycolide) (PLGA) microspheres. Exenatide-loaded PLGA microspheres were incubated at different relative
Shu-Chun Chuang et al.
Parasites & vectors, 6, 34-34 (2013-02-13)
Current development efforts of subunit vaccines against Toxoplasma gondii, the etiological agent of toxoplasmosis, have been focused mainly on tachyzoite surface antigen 1 (SAG1). Since microparticles made from poly (lactide-co-glycolide) (PLG) polymers have been developed as safe, potent adjuvants or
Vanna Sanna et al.
International journal of nanomedicine, 7, 5501-5516 (2012-10-25)
Resveratrol, like other natural polyphenols, is an extremely photosensitive compound with low chemical stability, which limits the therapeutic application of its beneficial effects. The development of innovative formulation strategies, able to overcome physicochemical and pharmacokinetic limitations of this compound, may
Mani Gajendiran et al.
Colloids and surfaces. B, Biointerfaces, 104, 107-115 (2013-01-10)
A series of biodegradable low molecular weight PLGA-PEG-PLGA tri-block copolymers have been synthesized in powder form. The anti-tuberculosis drug Isoniazid (INH) loaded polymeric core-shell nanoparticles (CSNPs) have been prepared by sonication followed by water-in-oil-in-water (w/o/w) double emulsification technique. The nanoparticles

Articoli

The world of commercial biomaterials has stagnated over the past 30 years as few materials have successfully transitioned from the bench to clinical use. Synthetic aliphatic polyesters have continued to dominate the field of resorbable biomaterials due to their long history and track record of approval with the U.S. Food and Drug Administration (FDA).

Aliphatic polyesters such as polylactide, poly(lactide-co-glycolide) and polycaprolactone, as well as their copolymers, represent a diverse family of synthetic biodegradable polymers that have been widely explored for medical uses and are commercially available.

Aliphatic polyesters such as polylactide, poly(lactide-co-glycolide) and polycaprolactone, as well as their copolymers, represent a diverse family of synthetic biodegradable polymers that have been widely explored for medical uses and are commercially available.

In the past two decades, tissue engineering and regenerative medicine have become important interdisciplinary fields that span biology, chemistry, engineering, and medicine.

Vedi tutto

Contenuto correlato

Interest in utilizing biodegradable polymers for biomedical applications has grown since the 1960s.

Il team dei nostri ricercatori vanta grande esperienza in tutte le aree della ricerca quali Life Science, scienza dei materiali, sintesi chimica, cromatografia, discipline analitiche, ecc..

Contatta l'Assistenza Tecnica.