Direkt zum Inhalt
Merck

Llgl1 prevents metaplastic survival driven by epidermal growth factor dependent migration.

Oncotarget (2016-08-20)
Erin Greenwood, Sabrina Maisel, David Ebertz, Atlantis Russ, Ritu Pandey, Joyce Schroeder
ZUSAMMENFASSUNG

We have previously demonstrated that Llgl1 loss results in a gain of mesenchymal phenotypes and a loss of apicobasal and planar polarity. We now demonstrate that these changes represent a fundamental shift in cellular phenotype. Llgl1 regulates the expression of multiple cell identity markers, including CD44, CD49f, and CD24, and the nuclear translocation of TAZ and Slug. Cells lacking Llgl1 form mammospheres, where survival and transplantability is dependent upon the Epidermal Growth Factor Receptor (EGFR). Additionally, Llgl1 loss allows cells to grow in soft-agar and maintain prolonged survival as orthotopic transplants in NOD-SCIDmice. Lineage tracing and wound healing experiments demonstrate that mammosphere survival is due to enhanced EGF-dependent migration. The loss of Llgl1 drives EGFR mislocalization and an EGFR mislocalization point mutation (P667A) drives these same phenotypes, including activation of AKT and TAZ nuclear translocation. Together, these data indicate that the loss of Llgl1 results in EGFR mislocalization, promoting pre-neoplastic changes.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Monoklonales Anti-β-Aktin in Maus hergestellte Antikörper, clone AC-15, ascites fluid
Sigma-Aldrich
Monoklonale Anti-MAP-Kinase, aktiviert (Diphosphorylierter ERK-1&2) in Maus hergestellte Antikörper, clone MAPK-YT, ascites fluid
Sigma-Aldrich
Anti-EGFR-Antikörper, Klon 225 (azidfrei), clone 225, from mouse