Direkt zum Inhalt
Merck

The efflux pump inhibitor timcodar improves the potency of antimycobacterial agents.

Antimicrobial agents and chemotherapy (2014-12-24)
Trudy H Grossman, Carolyn M Shoen, Steven M Jones, Peter L Jones, Michael H Cynamon, Christopher P Locher
ZUSAMMENFASSUNG

Previous studies indicated that inhibition of efflux pumps augments tuberculosis therapy. In this study, we used timcodar (formerly VX-853) to determine if this efflux pump inhibitor could increase the potency of antituberculosis (anti-TB) drugs against Mycobacterium tuberculosis in in vitro and in vivo combination studies. When used alone, timcodar weakly inhibited M. tuberculosis growth in broth culture (MIC, 19 μg/ml); however, it demonstrated synergism in drug combination studies with rifampin, bedaquiline, and clofazimine but not with other anti-TB agents. When M. tuberculosis was cultured in host macrophage cells, timcodar had about a 10-fold increase (50% inhibitory concentration, 1.9 μg/ml) in the growth inhibition of M. tuberculosis and demonstrated synergy with rifampin, moxifloxacin, and bedaquiline. In a mouse model of tuberculosis lung infection, timcodar potentiated the efficacies of rifampin and isoniazid, conferring 1.0 and 0.4 log10 reductions in bacterial burden in lung, respectively, compared to the efficacy of each drug alone. Furthermore, timcodar reduced the likelihood of a relapse infection when evaluated in a mouse model of long-term, chronic infection with treatment with a combination of rifampin, isoniazid, and timcodar. Although timcodar had no effect on the pharmacokinetics of rifampin in plasma and lung, it did increase the plasma exposure of bedaquiline. These data suggest that the antimycobacterial drug-potentiating activity of timcodar is complex and drug dependent and involves both bacterial and host-targeted mechanisms. Further study of the improvement of the potency of antimycobacterial drugs and drug candidates when used in combination with timcodar is warranted.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Phorbol-12-myristat-13-acetat, ≥99% (TLC), film or powder
Sigma-Aldrich
Ethidiumbromid -Lösung, BioReagent, for molecular biology, 10 mg/mL in H2O
Sigma-Aldrich
Ethanolamin, ≥99%
Sigma-Aldrich
Ethidiumbromid -Lösung, BioReagent, for molecular biology, 500 μg/mL in H2O
Sigma-Aldrich
Ethidiumbromid, BioReagent, for molecular biology, powder
Sigma-Aldrich
Ethanolamin, purified by redistillation, ≥99.5%
Sigma-Aldrich
Phorbol-12-myristat-13-acetat, synthetic, ≥98.0% (TLC)
Sigma-Aldrich
Clofazimin
Sigma-Aldrich
Ethanolamin, ≥98%
Sigma-Aldrich
Acriflavin, fluorescent label
Sigma-Aldrich
Ethidiumbromid -Lösung, for fluorescence, ~1% in H2O
Sigma-Aldrich
Ethionamid
Sigma-Aldrich
Ethanolamin, ACS reagent, ≥99.0%
Sigma-Aldrich
Phenolrot, powder, BioReagent, suitable for cell culture
Sigma-Aldrich
Ethidiumbromid, ~95% (HPLC)
Sigma-Aldrich
Acriflavin, suitable for fluorescence, BioReagent, ≥90% (AT)
Sigma-Aldrich
Phenolrot, ACS reagent
Supelco
Isoniazid, analytical standard, ≥99% (TLC)
Sigma-Aldrich
Ethanolamin, liquid, BioReagent, suitable for cell culture, ≥98%
Supelco
Ethanolamin, analytical standard
Sigma-Aldrich
Ethanolamin, puriss. p.a., ACS reagent, ≥99.0% (GC/NT)
Supelco
Aucubin, analytical standard
Isoniazid, European Pharmacopoeia (EP) Reference Standard
Ethionamid, European Pharmacopoeia (EP) Reference Standard
Trolamin Unreinheit A, European Pharmacopoeia (EP) Reference Standard
Clofazimin, European Pharmacopoeia (EP) Reference Standard
Ethionamid für die Systemeignung, European Pharmacopoeia (EP) Reference Standard
Aucubin, primary reference standard