Direkt zum Inhalt
Merck
  • Quantification of furanic derivatives in fortified wines by a highly sensitive and ultrafast analytical strategy based on digitally controlled microextraction by packed sorbent combined with ultrahigh pressure liquid chromatography.

Quantification of furanic derivatives in fortified wines by a highly sensitive and ultrafast analytical strategy based on digitally controlled microextraction by packed sorbent combined with ultrahigh pressure liquid chromatography.

Journal of chromatography. A (2015-01-27)
Rosa Perestrelo, Catarina L Silva, José S Câmara
ZUSAMMENFASSUNG

An improved, reliable and powerful analytical strategy based on digitally controlled microextraction by packed sorbent (MEPS) combined with ultrahigh pressure liquid chromatography (UHPLC) was validated for the simultaneous identification and quantification of major furanic derivatives, namely 5-hydroxymethyl-2-furaldehyde (5HMF), 5-methyl-2-furaldehyde (5MF), 2-furaldehyde (2F) and 2-furyl methyl ketone (2FMK), in fortified wines. To enhance the extraction efficiency of the target furanic derivates, several influencing extraction parameters, such as number of loading cycles, nature of elution solvent and elution volume, were evaluated and optimized. In addition the ability of different MEPS sorbent materials, namely C2, C8, C18, SIL, M1, R-AX, R-CX and PGC, were also tested. The optimal analytical conditions involved loading 3×200 μL of wine samples through a C8 sorbent in a MEPS syringe placed in the semi-automatic eVolH syringe followed by elution using 200 μL MeOH:H2O (95:5, v/v). The furanic derivates separation was achieved using a CORTECS UPLC(®) C18 analytical column in an ultrafast chromatographic run (within 4 min). The method performance was assessed for dry/medium dry (D/MD) and sweet/medium sweet (S/MS) model wines in terms of selectivity, linearity, limit of detection (LOD), limit of quantitation (LOQ), accuracy, precision and matrix effect, using model wine matrix-matched calibration. Good linearity was obtained with a regression coefficient (r(2)) higher than 0.992. A good precision was attained (RSD<5%) and low LODs were achieved for D/MD (4.5-129.3 ng L(-1)) and S/MS (6.9-285.2 ng L(-1)) model wines. The quantification limits (LOQ) for D/MD model wines ranged from 14.9 to 431.0 ng L(-1), whereas for S/MS model wines range from 23.1 to 950.5 ng L(-1). The method also afforded satisfactory results in terms of accuracy, ranging from 74 to 97% for D/MD wines and between 84 and 99% for S/MS wines. The MEPS(C8)/UHPLC-PDA analytical strategy was successfully applied to analyze furanic derivates in 26 fortified Madeira wines from different types (D/MD, S/MS) and ages. The obtained results revealed the analytical strategy as a suitable tool which combines sensitivity, effectiveness, reduced analysis time and simple analytical procedure. Principal component analysis (PCA) suggested that fortified wines can be organized based on their age on PC1, which are mainly characterized by 5HMF.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, ≥99.9%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Acetonitril, HPLC Plus, ≥99.9%
Sigma-Aldrich
Glycerin, ACS reagent, ≥99.5%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Glycerin, for molecular biology, ≥99.0%
Sigma-Aldrich
Ameisensäure, reagent grade, ≥95%
Sigma-Aldrich
Glycerin, ReagentPlus®, ≥99.0% (GC)
Sigma-Aldrich
Methanol, HPLC Plus, ≥99.9%
Sigma-Aldrich
Ameisensäure, ACS reagent, ≥96%
Sigma-Aldrich
Ameisensäure, puriss. p.a., ACS reagent, reag. Ph. Eur., ≥98%
Sigma-Aldrich
Acetonitril, ACS reagent, ≥99.5%
Sigma-Aldrich
Acetonitril, for HPLC, for UV, ≥99.9% (GC)
Sigma-Aldrich
Acetonitril, suitable for HPLC, gradient grade, ≥99.9%
Sigma-Aldrich
Methanol, suitable for HPLC, gradient grade, suitable as ACS-grade LC reagent, ≥99.9%
Sigma-Aldrich
Methanol, puriss. p.a., ACS reagent, reag. ISO, reag. Ph. Eur., ≥99.8% (GC)
Sigma-Aldrich
Methanol, Laboratory Reagent, ≥99.6%
Sigma-Aldrich
Ameisensäure, puriss., meets analytical specifications of DAC, FCC, 98.0-100%
Sigma-Aldrich
Ameisensäure, ACS reagent, ≥88%
Sigma-Aldrich
Glycerin -Lösung, 83.5-89.5% (T)
Sigma-Aldrich
Methanol, ACS spectrophotometric grade, ≥99.9%
Sigma-Aldrich
Acetonitril, suitable for HPLC-GC, ≥99.8% (GC)
Sigma-Aldrich
Glycerin, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for electrophoresis, ≥99% (GC)
Sigma-Aldrich
Glycerin, BioUltra, for molecular biology, anhydrous, ≥99.5% (GC)
Sigma-Aldrich
Methanol, BioReagent, ≥99.93%
Sigma-Aldrich
Methanol, ACS reagent, ≥99.8%
Sigma-Aldrich
Glycerin, puriss., anhydrous, 99.0-101.0% (alkalimetric)
Sigma-Aldrich
Methanol, Absolute - Acetone free
USP
Glycerin, United States Pharmacopeia (USP) Reference Standard