Pular para o conteúdo
Merck
Todas as fotos(3)

Documentos Principais

723274

Sigma-Aldrich

4-Cyano-4-[(dodecylsulfanylthiocarbonyl)sulfanyl]pentanoic acid

97% (HPLC)

Sinônimo(s):

4-Cyano-4-(((dodecylthio)carbonothioyl)thio)pentanoic acid

Faça loginpara ver os preços organizacionais e de contrato


About This Item

Fórmula empírica (Notação de Hill):
C19H33NO2S3
Número CAS:
Peso molecular:
403.67
Número MDL:
Código UNSPSC:
12352100
ID de substância PubChem:
NACRES:
NA.23

Nível de qualidade

Ensaio

97% (HPLC)

Formulário

solid

pf

64-68 °C

temperatura de armazenamento

−20°C

cadeia de caracteres SMILES

CCCCCCCCCCCCSC(=S)SC(C)(CCC(O)=O)C#N

InChI

1S/C19H33NO2S3/c1-3-4-5-6-7-8-9-10-11-12-15-24-18(23)25-19(2,16-20)14-13-17(21)22/h3-15H2,1-2H3,(H,21,22)

chave InChI

RNTXYZIABJIFKQ-UHFFFAOYSA-N

Descrição geral

Need help choosing the correct RAFT Agent? Please consult the RAFT Agent to Monomer compatibility table.

Pictogramas

Exclamation mark

Palavra indicadora

Warning

Frases de perigo

Declarações de precaução

Classificações de perigo

Acute Tox. 4 Oral

Código de classe de armazenamento

11 - Combustible Solids

Classe de risco de água (WGK)

WGK 3

Ponto de fulgor (°F)

Not applicable

Ponto de fulgor (°C)

Not applicable


Escolha uma das versões mais recentes:

Certificados de análise (COA)

Lot/Batch Number

Não está vendo a versão correta?

Se precisar de uma versão específica, você pode procurar um certificado específico pelo número do lote ou da remessa.

Já possui este produto?

Encontre a documentação dos produtos que você adquiriu recentemente na biblioteca de documentos.

Visite a Biblioteca de Documentos

De-Xiang Zhang et al.
Scientific reports, 9(1), 1367-1367 (2019-02-06)
A new and facile approach to selectively functionalize the internal and external surfaces of porous silicon (pSi) for drug delivery applications is reported. To provide a surface that is suitable for sustained drug release of the hydrophobic cancer chemotherapy drug
Tong Yang et al.
Biomaterials science, 8(20), 5698-5714 (2020-09-16)
The combination therapy of cisplatin (CDDP) and metformin (MET) is a clinical strategy to enhance therapeutic outcomes in lung cancer. However, the efficacy of this combination is limited due to the asynchronous pharmacokinetic behavior of CDDP and MET, used as
Yiyuan Guo et al.
Expert opinion on drug delivery, 17(3), 407-421 (2020-02-06)
Background: Natamycin is the only topical ophthalmic antifungal drug approved by the Food and Drug Administration (FDA) of the United States, but has unsatisfactory factors such as high dosing frequency.Methods: We report the synthesis and preparation of self-assembled poly(ethylene glycol)-block-poly(glycidyl
Katharina Hendrich et al.
Polymers, 12(6) (2020-05-30)
Linear and four-arm star polystyrene samples prepared by RAFT polymerization were grafted to gold surfaces directly via their thiocarbonylthio-end groups. Nanoscale polymer patterns were subsequently formed via constrained dewetting. The patterned polymer films then served as a template for the
RAFT Agent Design and Synthesis
Keddie, D. J.; et al.
Macromolecules, 45, 5321-5342 (2012)

Artigos

The supply of low cost, high purity and effective Reversible addition−fragmentation chain-transfer (RAFT) Agents is the essential element in the industrial implementation of RAFT polymerization technology.

A series of polymerization were carried out using RAFT agents and monomers yielding well-defined polymers with narrow molecular weight distributions. The process allows radical-initiated growing polymer chains to degeneratively transfer reactivity from one to another through the use of key functional groups (dithioesters, trithiocarbonates, xanthates and dithiocarbamates). RAFT agents help to minimize out-of-control growth and prevent unwanted termination events from occurring, effectively controlling polymer properties like molecular weight and polydispersity. RAFT agents are commercially available. RAFT does not use any cytotoxic heavy metal components (unlike ATRP).

The modification of biomacromolecules, such as peptides and proteins, through the attachment of synthetic polymers has led to a new family of highly advanced biomaterials with enhanced properties.

We presents an article about a micro review of reversible addition/fragmentation chain transfer (RAFT) polymerization. RAFT (Reversible Addition/Fragmentation Chain Transfer) polymerization is a reversible deactivation radical polymerization (RDRP) and one of the more versatile methods for providing living characteristics to radical polymerization.

Ver tudo

Protocolos

We presents an article featuring procedures that describe polymerization of methyl methacrylate and vinyl acetate homopolymers and a block copolymer as performed by researchers at CSIRO.

Sigma-Aldrich presents an article about RAFT, or Reversible Addition/Fragmentation Chain Transfer, which is a form of living radical polymerization.

Sigma-Aldrich presents an article about the typical procedures for polymerizing via ATRP, which demonstrates that in the following two procedures describe two ATRP polymerization reactions as performed by Prof. Dave Hadddleton′s research group at the University of Warwick.

Nossa equipe de cientistas tem experiência em todas as áreas de pesquisa, incluindo Life Sciences, ciência de materiais, síntese química, cromatografia, química analítica e muitas outras.

Entre em contato com a assistência técnica