Direkt zum Inhalt
Merck
  • Self-Assembled Monolayers of Nitron: Self-Activated and Chemically Addressable N-Heterocyclic Carbene Monolayers with Triazolone Structural Motif.

Self-Assembled Monolayers of Nitron: Self-Activated and Chemically Addressable N-Heterocyclic Carbene Monolayers with Triazolone Structural Motif.

Chemistry (Weinheim an der Bergstrasse, Germany) (2020-04-29)
Einav Amit, Iris Berg, Elad Gross
ZUSAMMENFASSUNG

N-heterocyclic carbenes (NHCs) have emerged as a unique molecular platform for the formation of self-assembled monolayers (SAMs) on various surfaces. However, active carbene formation requires deprotonation of imidazolium salt precursors, which is mostly facilitated by exposure of the salt to exogenous base. Base residues were found to be adsorbed on the metal surface and hindered the formation of well-ordered carbene-based monolayers. Herein, we show that nitron, a triazolone-based compound that freely tautomerizes to a carbene, can spontaneously self-assemble into monolayers on Pt and Au surfaces, which obviates the necessity for base-induced deprotonation for active carbene formation. SAMs of nitron were found to be thermally stable and could not be displaced by thiols, and thus their high chemical stability was demonstrated. The amino group in surface-anchored nitron was shown to be chemically available for SN 2 reactions, and makes surface-anchored nitron a chemically addressable cross-linking reagent for surface modifications.

MATERIALIEN
Produktnummer
Marke
Produktbeschreibung

Sigma-Aldrich
Kalium-tert-butoxid, sublimed grade, 99.99% trace metals basis
Sigma-Aldrich
4-Nitrothiophenol, technical grade, 80%
Sigma-Aldrich
Bromnitromethan, technical grade, 90%
Sigma-Aldrich
Potassium tert-butoxide ChemBeads