跳轉至內容
Merck
  • Developing structure-activity relationships for the prediction of hepatotoxicity.

Developing structure-activity relationships for the prediction of hepatotoxicity.

Chemical research in toxicology (2010-06-18)
Nigel Greene, Lilia Fisk, Russell T Naven, Reine R Note, Mukesh L Patel, Dennis J Pelletier
摘要

Drug-induced liver injury is a major issue of concern and has led to the withdrawal of a significant number of marketed drugs. An understanding of structure-activity relationships (SARs) of chemicals can make a significant contribution to the identification of potential toxic effects early in the drug development process and aid in avoiding such problems. This process can be supported by the use of existing toxicity data and mechanistic understanding of the biological processes for related compounds. In the published literature, this information is often spread across diverse sources and can be varied and unstructured in quality and content. The current work has explored whether it is feasible to collect and use such data for the development of new SARs for the hepatotoxicity endpoint and expand upon the limited information currently available in this area. Reviews of hepatotoxicity data were used to build a structure-searchable database, which was analyzed to identify chemical classes associated with an adverse effect on the liver. Searches of the published literature were then undertaken to identify additional supporting evidence, and the resulting information was incorporated into the database. This collated information was evaluated and used to determine the scope of the SARs for each class identified. Data for over 1266 chemicals were collected, and SARs for 38 classes were developed. The SARs have been implemented as structural alerts using Derek for Windows (DfW), a knowledge-based expert system, to allow clearly supported and transparent predictions. An evaluation exercise performed using a customized DfW version 10 knowledge base demonstrated an overall concordance of 56% and specificity and sensitivity values of 73% and 46%, respectively. The approach taken demonstrates that SARs for complex endpoints can be derived from the published data for use in the in silico toxicity assessment of new compounds.

材料
產品編號
品牌
產品描述

Sigma-Aldrich
N,N-二甲基甲酰胺, ACS reagent, ≥99.8%
Sigma-Aldrich
Trizma ® 碱, Primary Standard and Buffer, ≥99.9% (titration), crystalline
Sigma-Aldrich
N,N-二甲基甲酰胺, suitable for HPLC, ≥99.9%
Sigma-Aldrich
泰莫西芬, ≥99%
Sigma-Aldrich
氯仿, contains 100-200 ppm amylenes as stabilizer, ≥99.5%
Sigma-Aldrich
乙二醇, ReagentPlus®, ≥99%
Sigma-Aldrich
碳酸氢钠, ACS reagent, ≥99.7%
Sigma-Aldrich
氯仿, HPLC Plus, for HPLC, GC, and residue analysis, ≥99.9%, contains amylenes as stabilizer
Sigma-Aldrich
氯仿, suitable for HPLC, ≥99.8%, contains 0.5-1.0% ethanol as stabilizer
Sigma-Aldrich
Trizma ® 碱, BioPerformance Certified, meets EP, USP testing specifications, suitable for cell culture, ≥99.9% (titration)
Sigma-Aldrich
碳酸氢钠, powder, BioReagent, for molecular biology, suitable for cell culture, suitable for insect cell culture
Sigma-Aldrich
1,2-二氯乙烷, ACS reagent, ≥99.0%
Sigma-Aldrich
地塞米松, powder, BioReagent, suitable for cell culture, ≥97%
Sigma-Aldrich
视黄酸, ≥98% (HPLC), powder
Sigma-Aldrich
氯仿, contains ethanol as stabilizer, ACS reagent, ≥99.8%
Sigma-Aldrich
碳酸氢钠, ReagentPlus®, ≥99.5%, powder
Sigma-Aldrich
D -山梨醇, ≥98% (GC)
Sigma-Aldrich
N-乙酰基-L-半胱氨酸, BioReagent, suitable for cell culture
Sigma-Aldrich
氯化钠, for molecular biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
生物素, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
L -抗坏血酸, powder, suitable for cell culture, γ-irradiated
Sigma-Aldrich
L -抗坏血酸, BioXtra, ≥99.0%, crystalline
Sigma-Aldrich
氯化钠 溶液, 5 M in H2O, BioReagent, for molecular biology, suitable for cell culture
Sigma-Aldrich
氯化钠 溶液, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
碳酸氢钠 溶液, solution (7.5%), sterile-filtered, BioReagent, suitable for cell culture
Sigma-Aldrich
四氯化碳, reagent grade, 99.9%
Sigma-Aldrich
三氯乙烯, ACS reagent, ≥99.5%
Sigma-Aldrich
氯化钠, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
氯化铵, ReagentPlus®, ≥99.5%
Sigma-Aldrich
氯仿, suitable for HPLC, ≥99.8%, amylene stabilized